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ABSTRACT

Robot navigation systems are based on Simultaneous Localization and
Mapping (SLAM) and obstacle avoidance. We construct maps for the robot
using computer vision methods requiring high repeatability for consistent
feature tracking. Also, the obstacle avoidance method needs an efficient
tool for fusing data from multiple sensors. This research enhances SLAM
accuracy and obstacle avoidance using advanced visual processing and dy-
namic neural fields (DNF). We propose two key methods: (1) an enhanced
multiscale Harris detector using steerable filters for robust feature extrac-
tion, achieving around 90% repeatability; and (2) a dynamic neural field
algorithm that predicts the optimal heading angle by integrating visual de-
scriptors and LIDAR data. The first method’s experimental results show
that the new feature detector achieves high accuracy, outperforming exist-
ing methods. Its invariance to the orientation of the image makes it insen-
sitive to the rotations of the robot. We applied it to the monocular SLAM
and remarked that the positions of the robot were computed precisely. In
the second method, the results showed that the dynamic neural fields algo-
rithm ensures efficient obstacle avoidance by fusing the gist of the image
and LIDAR data, resulting in more accurate and consistent navigation than
laser-only methods. In conclusion, the study presents significant advance-
ments in robot navigation through robust feature detection for SLAM and
effective obstacle avoidance using dynamic neural fields. These advance-
ments significantly enhance precision and reliability in robot navigation,
paving the way for future innovations in autonomous robotic applications.

This is an open access article under the CC-BY-SA license.

1. Introduction

Robot navigation involves two primary approaches: the Centralized Sense-Plan-Act (SPA) ar-
chitectures and the Distributed Behavior-Based Architectures. In SPA, the robot creates a global
representation of the environment, known as a map, using Simultaneous Localization and Mapping
(SLAM). In fact, SLAM aims to estimate a mobile robot’s trajectory while concurrently constructing
a representation of the environment. The robot senses its surroundings to construct an accurate map,
plans a set of actions, and then acts based on this plan. Conversely, in the Distributed Behavior-
Based Architecture, the robot handles sub-problems separately to create basic behaviors that trigger
immediate reactions. This approach produces immediate reactions to stimuli, such as images or LI-
DAR scans, using dynamic systems like the differential equations of the neural fields developed by
Amari [1], predicting the best actions. This paper presents two key innovations: an enhanced mul-
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tiscale Harris detector utilizing steerable filters and a dynamic neural field algorithm for efficient
obstacle avoidance.

SLAM techniques are essential to compute the robot’s poses given the environment represented
by a map. The problem we aim to solve is the visual frame matching. The visual features that are
not invariant may increase the uncertainty of the computation of the visual landmarks. To solve this,
the features should be extracted from the same image but in different fields of view. This will give an
invariant descriptor. The second problem we want to tackle is the robot obstacle avoidance. Because
of the data the robot acquire from the environment, the actions the robot should take when it finds
an obstacle can be errornous. The use of the Dynamic Neural Fields can predict the best actions by
taking as input several sources such as images and range data.

Despite advancements in SLAM and obstacle avoidance, challenges remain in achieving high
repeatability in feature tracking and robust obstacle detection in dynamic environments. We focus on
using visual sensors to build the map. During various SLAM steps, matching between consecutive
frames or re-localizing the robot involve comparing perceived landmarks with previous landmarks by
matching their local patches. Repeatability is crucial as it ensures consistent feature tracking, enabling
reliable tracking of a feature point in multiple frames. Accurate camera pose estimation relies on re-
observing the same features insured by robust data association that depends on the repeatability of
the feature. These factors highlight the importance of creating an effective detector for feature points
and descriptors of the region around them.

Incorporating steerable filters into a Harris multiscale detector provides orientation invariance,
enhanced feature detection and computational efficiency. Moreover, Dynamic Neural Fields (DNFs)
are particularly useful in scenarios where real-time adaptability, they handle noise and uncertainty in
the stimuli signals and can model complex behaviors.

Extraction of visual features: Several visual feature extraction methods are used for visual
SLAM applications such as the ORB and BRISC features used in ORBSLAM2 [2]. Their invari-
ance against orientation and scale changes help for computing accurate visual landmarks. DeTone
et al. presented SuperPoint, a self-supervised framework for interest point detection and description
trained on synthetic data, which shows strong performance in terms of repeatability [3], [5]. Revaud
presented R2D2, a feature point detector and descriptor characterized by high repeatability and re-
liability using a Convolutional Neural Network (CNN) to ensure the robustness of critical points to
various transformations [6], [7]. Luo et al. incorporated an attention mechanism to improve the per-
formance of SuperPoint, resulting in ASLFeat [8]. Dusmanu et al. developed an end-to-end trainable
CNN for joint detection and description of local features called D2-Net [9]. ContextDesc, conceived
by Luo et al., uses a CNN to extract dense feature maps that integrate information from a larger image
region surrounding a local feature, helping disambiguate similar local features [10], [13]. Ono et al.
developed LF-Net, which predicts the probability of each pixel being a keypoint using a heatmap
representation, improving the descriptor’s accuracy by applying random homographies to the input
image [14].

Visual SLAM: In visual SLAM, the robustness of a system depends on the repeatability of the
used feature points. Tareen et al. compared various features such as SIFT, SURF, KAZE, AKAZE,
ORB, and BRISK [15]–[17]. Fan et al. developed semantic-aware local features for visual local-
ization by utilizing a CNN architecture for ASLFeat features. Mu et al. presented an algorithm
that extracts both line and point features, matching them precisely using the GMS algorithm and
RatioTest algorithm [18]. Ruotsalainen et al. improved tracking accuracy in collaborative robotics
by using KAZE features for multiscale feature detection with high repeatability [19]. Molina et al.
fused data from inertial measurement, optical cameras, and laser range finders to compute a delta-
position (DPOS) measurement, improving visual odometry by ensuring invariance to the scale of
visual features [20]. Bellavia et al. presented an improved version of HarrisZ called HarrisZ+ that
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uses adaptive thresholding to adjust corner detection sensitivity dynamically [7], [21]–[23]. Fontan et
al. developed AnyFeature-VSLAM based on ORB-SLAM2, introducing automated parameter tuning
to switch between different visual features effortlessly [24], [25].

Navigation with with obstacle avoidance: Reactive navigation based on stimuli also benefits
from advanced methods. Orr et al. surveyed deep reinforcement learning (DRL) for multi-robot sys-
tems, where more than one robot might be needed to complete a task independently [26]. Advances
in attention mechanisms have led to new techniques for detecting obstacles in mobile robots by fo-
cusing on relevant features [27], [28]. Schulze discussed a new encoder-based architecture where
the encoder improves feature memorability, and a dynamic neural field creates a neural-implicit kine-
matic model for motion planning [29]. Zhang et al. focused on various neural network models like
ZNN, RNN, and GNN for optimal control of redundant manipulators [30]. Li et al. integrated a
DRL agent based on a Deep Q network for high-level control commands to avoid dynamic obsta-
cles, employing a predictive controller for reaching target waypoints and rejecting disturbances for
Unmanned Surface Vehicles (USVs) [31]–[33]. Chen et al. trained a convolutional neural network
to predict actions from a feature map for map-based navigation [34]. Varma et al. described a new
path planning approach based on adaptive beetle swarm levy flight optimization (BSLFO) for optimal
path calculation, with obstacle avoidance ensured by a deep learning model optimized with a swarm
intelligence procedure [35]–[37]. Cimurs developed a goal-oriented navigation algorithm based on
Continuous Action Space (CAN) in deep reinforcement learning, using depth information and goal
position in polar coordinates [38], [41]. Li et al. extracted the compact obstacle distribution using
volumetric representations and employed StereoVoxelNet, a deep neural encoder-decoder to detect
occupancy from stereo images [42]. Wenzel et al. used depth maps as inputs to a generative adver-
sarial network for obstacle avoidance [43]. Putra utilized embodied neuromorphic AI by deploying
spiking neural networks (SNNs) for obstacle avoidance [44].

In this paper, we address these challenges by presenting a novel feature point detector and a
dynamic neural field algorithm for effective obstacle avoidance, contributing to improved navigation
in complex environments. The feature detector extracts salient features necessary for matching suc-
cessive views in the SLAM algorithm. Then the dynamic neural field we used allows to predict the
best actions the robot should do in response to stimuli. We make a sensor fusion method to combine
stimuli from the camera and the LIDAR.

2. The First Proposed Method: Mapping With Steerable Filters

In the following, we present a method of visual feature extraction that uses steerable filters to
compute an invariant feature for robot rotation. To validate the efficiency of the detector and its
descriptor, we compute metrics such as repeatability, which gives a good rate of accuracy.

2.1. Observations of the Landmarks

The camera captures the image, and the robot observes the near landmarks on the map eq. (1).
By matching, the robot can correct its pose. Then it should project them using the inverse pinhole
model to the new keyframe.
Let us have the pose of the landmark yi in the world frame. The pose of this feature in the camera
frame is given with its observation :

hRL = RRW (yWi − rW ) (1)

Where RRW is the inverse of the rotation matrix given by transforming the quaternion of the robot
state to a rotation matrix, and rW is the pose of the camera in the world frame.

To get coordinates of the predicted feature, we multiply it by the intrinsic parameters of the right
and the left cameras :
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For the left camera, the observation is given with eq. (2):

hi =

[
u
v

]
=

ul0 − fklu
hR
Lx

hR
Lz

vl0 − fklv
hR
Ly

hR
Lz

 (2)

Where ul0, vl0, fklu and fklv are the standard camera calibration parameters. The same equation is
for the right camera expect that we use its specific intrinsic parameters.

2.2. The Visual Detector Descriptor

We start by acquiring an image and proceed to filter it using steerable filters across several ori-
entations. From each filtered image, we extract multiscale Harris feature points, which are then
clustered. After this initial clustering, we apply a secondary clustering method to further group the
feature points, and calculate the mean for each cluster. For each resulting feature point, we create
a patch surrounding it. Each patch is then represented in various color spaces. Subsequently, we
compute the entropy of the luminance for each patch. Finally, we create a descriptor composed of
five floats to encapsulate this information.

2.2.1. The Steerable Filter

The steerable filters are a class of orientation-selective filters used in computer vision whose
principle is to steer the filter to the desired angle applied to the image. Mathematically, this operation
consists to take a linear combination of a set of basis filters. Given the orientation θ ∈ [0, 2π] radians.
Let’s h(x, y) be the steerable filter at the orientation θ applied to the image I(x, y).

h(θ, x, y) =
∑N

i=1 ci(θ) · hi(x, y) (3)

Where hi(x, y) are the basis filters chosen to be the derivatives of the Gaussians for example. ci(θ)
are the steering coefficients that depend on the desired orientation θ. N is the number of the steerable
filters.

The filter response F (θ, x, y) at orientation θ can be obtained by convolving the image with the
steerable filter:

F (θ, x, y) = I(x, y) ∗ h(θ, x, y)
F (θ, x, y) = I(x, y) ∗

(∑N
i=1 ci(θ) · hi(x, y)

)
F (θ, x, y) =

∑N
i=1 ci(θ) · (I(x, y) ∗ hi(x, y))

(4)

The result is a new image that highlights the features in the original image that aligns with the
filters’ orientation such as the edge or the texture. Plus, the expression of the coefficients ci(θ) can be
for example a set of trigonometric functions of the orientation using the scale-dependent derivatives.

2.2.2. Application of the Multiscale Harris Detector With Kmean Clustering

The multiscale Harris detector is an extension of the Harris detector that runs on multiple scales
to detect the corners in the image. The mathematical formulation of the multi-scale Harris detector
involves computing a multi-scale structure tensor, also known as the second-moment matrix:
Let’s F (x, y, θ) be the input of the corner detector:

Ixx(σ) =
∂

∂x
(G(σ) ∗ F ) (5)

Iyy(σ) =
∂

∂y
(G(σ) ∗ F ) (6)
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M(σ) =

[ ∑
u,v w(u, v;σ)I

2
x(σ)

∑
u,v w(u, v;σ)Ix(σ)Iy(σ)∑

u,v w(u, v;σ)Ix(σ)Iy(σ)
∑

u,v w(u, v;σ)I
2
y (σ)

]
(7)

The corner points are identified at multiple scales by finding local maxima of R in both scale and
space. The multi-scale Harris response function R(σ) is calculated for each scale:

R(σ) = det(M(σ))− k · (trace(M(σ)))2 (8)

The corner points are identified at multiple scales by finding local maxima of R in both scale and
space.

Besides, given that we extract the multiscale Harris feature points from N filtered image, the
number of these points become very high. To reduce it, we apply a kmean clustering to create cluster
of the most similar points, then we keep the mean of each cluster see Fig. 1.

Fig. 1. The feature extraction from each of the image filtered with steerable filters

2.3. The Computation of the Descriptor

We extract a square patch of size 20x20 pixels around each feature point in the image. Then,
we create different representations of the patch by quantizing the color information. That’s why we
generate five different colormap representations of the 20x20 patch. Each colormap corresponds to a
different quantization level in the RGB space. The quantization process reduces the number of colors
in the patch, which is done by clustering similar colors into discrete bins. Each of the five colormaps
quantizes the RGB colors in 16, 32, 64, 128, and 256 channels.

We compute the entropy of each patch by measuring the information content within each patch
representation. The entropy measures the randomness or unpredictability of color distributions within
the patch.

H = −
n∑

i=1

pi log(pi) (9)

Where pi is the probability of each color level in the quantized colormap. This gives a measure of
how diverse the color distribution is within the patch. This yields 5 entropy values shown in Fig. 2.

We formulate a robust descriptor for each feature point based on the computed entropies and
their variability.

Descriptor = [H1, H2, H3, H4, H5] (10)
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Fig. 2. Schematic representation of the image processing pipeline

2.4. Detector Descriptor Evaluation

To evaluate the multi-scale Harris detector, it’s essential to measure its ability to describe interest
points across different scales. Several measures can be used:

• Repeatability: This metric assesses how consistently the detector identifies the same points
under various transformations, such as rotation and scaling. High repeatability indicates ro-
bustness.

• Scale-invariance: The detector should identify features across multiple scales, enabling match-
ing between images with different resolutions.

• Accuracy: This property captures the distinctive characteristics of interest points, reflecting
how well the detector differentiates features.

Evaluating these factors determines the detector’s effectiveness in applications like Simultaneous
Localization and Mapping. In our paper, we propose evaluating our detector using only repeatability
due to the importance of viewpoint invariance in robot navigation. It is given with:

R =
|F1 ∩ F2|

min(|F1|, |F2|)
(11)

• |F1| is the number of features detected in the first image.
• |F2| is the number of features detected in the second image.
• |F1 ∩ F2| is the number of features that are consistently detected in both images

Furthermore the recall is given with:

Recall =
TP

TP + FN
(12)

Where TP are the true positives and FN are the false negatives.

2.5. Application to Navigation Methods

Our feature detector can be applied to SLAM methods with traditional navigation algorithms like
the A* algorithm or Dynamic Window Approach (DWA) used in ROS (Robot Operating System).
By combining its precision with path planning algorithms, we can enhance the robot’s ability to
navigate in complex environments while avoiding obstacles in real-time [45], [46]. Our feature is
more resilient to environment changes. It also improves the SLAM accuracy because the ability to
maintain consistent feature tracking across different frames and rotations of the robot reduces drift
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and errors in the generated maps, leading to more reliable navigation. Morover, the robustness of the
feature detection means that the robot can better interpret complex structures or moving obstacles.

2.6. Monocular SLAM Using our New Detector Descriptor

Our proposed visual feature is used in several steps of the Monocular SLAM. During the initial-
ization, it is used to match features between the first few frames to estimate the initial camera pose. It
is also used during the mapping to refine the map because we associate new observations with exist-
ing map points. It serves to predict where each feature will appear in the image before searching for
it which reduces the computational cost associated with feature matching. We use template matching
to match between the descriptor of the projected template patch into the current camera estimate and
we scan over the image data until a match is found.

However, the method heavily relies on accurate intrinsic parameters of the cameras. Any cal-
ibration errors or variations in camera parameters can significantly impact the accuracy of the pose
estimation and feature matching. This sensitivity to calibration can affect the navigation of the robot
in dynamic or uncontrolled environments where recalibration might not be feasible.

In the following, we present a short description of the monocular SLAM with inverse depth
parametrization.

2.6.1. Inverse Depth Parametrization of the Landmarks

We use the inverse depth parametrization in monocular SLAM to represent accurately the 3D
position of the feature. If we use the depth, the measure might be not accurate because when the
robot is far from the landmark, the uncertainty increases. For a given feature point observed from a
particular viewpoint, the inverse depth parametrization is given with:

y =



xi
yi
zi
αi

βi
ρi

 (13)

(xi, yi and zi) represents the pose of the landmark where it is first seen with the camera. α and β are
the azimut and the elevation that define the bearing of the point from the camera’s optical center. ρ is
the inverse of the depth.

State Representation: The state of the robot is given with:

x =
[
p q y1 · · · yn

]
(14)

Where p and q are the position and orientation in quaternion of the camera.

2.6.2. Prediction

In the prediction of the Extended Kalman Filter (EKF), The next pose of the robot is predicted
by using the motion model of the robot. It gives the current state xk based on the previous state xk−1

and the control of the wheels uk using a non linear function f.

xk|k−1 = f
(
xk−1|k−1,uk

)
(15)

The predicted covariance Pk is given with:

Pk|k−1 = FkPk−1|k−1F
⊤
k +Qk (16)
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Here, Fk is the Jacobian of the motion model with respect to the state, and Qk is the process
noise covariance.

2.6.3. Update

In the update of the EKF with the inverse depth parametrization, the measurement model converts
the inverse depth parametrization into a pixel measurement. The state estimation of the measure is
given with:

zki = h(xk|k−1, yi) + vk (17)

zk is the state of the observation. xk|k−1 is the probabilistic transition model. yi is the inverse depth
state of the -th feature. vk is the model gaussian noise.

To get zk, let’s project the 3D feature yi with the camera that is in the pose (p, q), where p
is the position and q is the orientation. First we transform the feature point from the inverse depth
coordinate to the camera-centered coordinate:

Xc =
1

ρi

cos(βi) sin(αi)
sin(β)

cos(βi) cos(αi)

 (18)

Plus, we rotate and translate the point to the world frame using the camera pose:

Xw = R(q)Xc + p (19)

Where R(q) is the rotation matrix corresponding to the quaternion.

Then we project the world frame coordinates onto the image plane using the camera’s intrinsic
parameters (focal lengths fx, fy and optical center cx, cy).

zk =

[
fx

Xw
Zw

+ cx
fy

Yw
Zw

+ cy

]
(20)

Where Xw, Yw, Zw are the components of Xw.

Hy =
∂zk
∂y

=
∂zk

∂

αβ
ρ

 (21)

The update of the robot position and the landmarks is given with:

Kk = Pk|k−1H
⊤
k (HkPk|k−1H

⊤
k +Rk)

−1 (22)

xk|k = xk|k−1 +Kk(zk − h(xk|k−1)) (23)

Kk is the Kalman gain, Hk is the jacobian of the measurement. Rk is the measurement noise
covariance. The updated covariance is given with:

Pk|k = (I−KkHk)Pk|k−1 (24)
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2.6.4. Data Association

It determines the correspondance between the observed feature zi and the map landmarks xmj

with the Mahalanobis distance that measures the similarity between the observed features and the
predicted measurements of landmarks. The innovation rji is given with:

rji = zi − h(p, yj) (25)

and the mahalanobis distance is given with:

dji =

√
(rji )

TS−1
i rji (26)

and:

Si = HiPHT
i +Ri (27)

Ri is the measurement noise covariance matrix. An observed feature zi is associated with the
landmark yj is the Mahalanobis distance dji is lower than a threshold τ .

When the feature is repeatable, it means that the same physical feature is detected as zi in dif-
ferent frames. It is crucial when calculating the innovation as it relies to the observed and predicted
features. Also when the feature is repeatable, the Mahalanobis distance will be lower. Plus, it insures
that the covariance matrix Si which involves the measurement noise covariance Ri accurately reflects
the uncertainty in the measurements.

Besides the inverse depth parametrization of the landmarks may lead to potential errors in depth
estimation when converting between different coordinate systems and managing the associated un-
certainties. Particularly when in environments with rapidly changing scenes or fast-moving objects.

3. The Second Proposed Method: Navigation with the Dynamic Neural Fields

We present the second method, which consists of developing a technique for robot navigation
that learns using a dynamic neural field. It receives visual stimuli and the distance and orientation
from the obstacle as inputs. Then, using a maximization algorithm based on the activations of the
neural field, we learn the best action to perform. We use the Euclidean distance between the desired
and the computed pose obtained by taking the predicted action to evaluate the technique see in Fig. 3.

Fig. 3. Block diagram of the reactive navigation system incorporating the gist and range-bearing
sensors. The system computes the desired position and orientation, applies control laws, avoids

obstacles, and controls the wheels based on sensor inputs and the current position

Younès Raoui, Accurate Robot Navigation Using Visual Invariant Features and Dynamic Neural Fields



ISSN 2775-2658 International Journal of Robotics and Control Systems
Vol. 4, No. 4, 2024, pp. 1584-1601

1593

3.1. Overview of the Dynamic Neural Fields

The Dynamic Neural Fields (DNF) is a neural network architecture used to make decisions of
the state of a non linear dynamic system. If we have N states of a system, we consider N populations
of neurons with activities Ak = g(uk) where g is a sigmoid for example. DNF are used in many
robotic applications such as graspoing and behavior generation. Also they are used to implement the
visual attention and to model time series [47]–[50].

The DNF are modeled with the Amari equation that predicts the best policy to take after receiving
noisy stimuli that could be for example a bell curve. It models the activations of each neuron with
the others by computing the inhibitory connexions. Then we find the neuron with the maximum
activation that gives us the best heading direction.

τ u̇(φ, t) = −u(φ, t) + S(φ, t) + h+

∫ +∞

−∞
w(φ, φ̇)f(u(φ̇, t))dφ̇ (28)

u(φ, t) is the firing potential, h is the resting activity level of the neuron. w(φ, φ̇) is a bell shaped
kernel that represents local excitatory and global inhibitory inflow from adjacent connections in the
field.

• If u(φ) ≤ 0, f(u(φ̇, t)) = 0 then τ u̇(φ, t) = −u(φ, t) + S(φ, t) + h
• If the stimulus isn’t sufficient, then the system remains inactive or below the threshold.
• If u(φ) > 0, the system doesn’t have a specific pic, f(u(φ̇, t)) ̸= 0 for all φ.
• If ∃φ, a1 ≤ φ ≤ a2, u(φ) > 0, the excitation u is localized and moves in a stationary trajectory

in the system (28). The solution is characterized by a single peak that indicates a focused area
of the activity.

The solution u(φ, t) shows a competition between N populations Ai in the response of the exter-
nal inputs that creates a dynamic interaction between the exitatory populations through the common
pool of inhibitory neurons mediated with the weights WEE , WEI and WIE . The DNF shows a
competition between exitatory and inhibitory populations through a shared inhibitory pool.

The neural architecture that implements the DNF is named winner-take-all network that makes a
decision on the winner between N populations.

φpeak = argmax{u(φ) | φ ∈ [1, N ]} (29)

It is worth mentioning that The differential equation of the DNF and the interaction weights
require careful tuning, which can be challenging and time-consuming. The choice of the parameters
of the DNF model can significantly impact the system’s performance which requires fine-tuning.
Morover, the accuracy of integrating the range and bearing stimulus into the DNF depends on the
precision of the Lidar or laser range finder sensors. This accuracy can adversely affect the navigation
performance in cluttered or dynamic obstacle environments.

3.2. Application to the Robot Navigation

The robot navigation is made with two behaviors : target acquisition and obstacle avoidance. We
give to the robot the desired trajectory that is transformed with the control law to linear and angular
velocities. However we should update those velocities to avoid obstacles and reach the target. We use
the DNF in order to decode the correct heading direction given the stimulus St.

τ u̇(φ, t) = −u(φ, t) + S(φ, t) + h+

N∑
φ̇=1

w(φ, φ̇)f(u(φ̇, t)) (30)

We use the following interaction weights :

Younès Raoui, Accurate Robot Navigation Using Visual Invariant Features and Dynamic Neural Fields



1594 International Journal of Robotics and Control Systems
Vol. 4, No. 4, 2024, pp. 1584-1601

ISSN 2775-2658

w(φ, φ̇) =

{
1 if ∥φ, φ̇∥ ≤ 3
−2.2 otherwise

(31)

3.2.1. Computation of the Stimulus

Each population of the neurons of the DNF receives the inputs. As we have N head directions,
we consider that each population encode one head direction. The obstacles stimulus is given with:

Sobstacle (φ, t) =
∑Nobst

l=1 g (dol)Sol(φ, t)

Sol(φ, t) = coe
−σ(φ−φl)

2 (32)

Where φ is the current head direction and φl is the direction to the obstacle l. σ is the rang of the
inhibition of the obstacle, c0 is the amplitude of the obstacle stimulus. Furthermore,

Starget(φ, t) = m1 −m2 ·
∥∥φtarget, φ

∥∥ (33)

φtarget is the head direction of the target. The resultant stimulus is given with:

S(φ, t) = Starget(φ, t)− Sobstacle(φ, t) (34)

Let φF be the head direction solution of the DNF differential equation that is the most stable
fixed point of it. The target velocity is given with:

VT (t) = Vmax

(
1− e−σvdT

)
(35)

dT is the distance between the robot and the target. σv > 0. The resultant obstacle velocity is
given with:

VO(t) = CO

(
1− g (dno) e

−σOv(φF−ino)
2
)

(36)

C0, σOv¿ 0. dno is the distance of the obstacle relative to the robot. ino is the nearest obstacle
direction to the robot movement direction.
The resultant velocity is given with:

V (t) =

{
VT (t)VO(t), φF > 0

0, φF ≤ 0
(37)

3.2.2. The Visual GIST Descriptor Stimulus

We describe each scene that the robot perceives by using the gist descriptor developed in [51].
The GIST attempts to describe the spatial structure of the image by looking for the frequencies in the
sub-images. Let I(x, y) be the current image.
Processing: We resize the image to have M rows and N columns: Iresized = resize(I,M,N)
Filtering: We filter it with a Gabor filter: λ is the wavelength of the sinusoidal factor, θ is the
orientation, ϕ is the phase offset, γ is the spatial aspect ratio, and σ is the standard deviation of the
Gaussian envelope:

I
(λ,θ)
filtered = Iresized ∗Gλ,θ,ϕ,γ(σ) (38)

Where * denotes the convolution operation
Windowing: We then create a grid of K*K windows Wk

Wk = I
(λ,θ)
filtered [xk : xk+1, yk : yk+1] (39)
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Where xk, xk+1, yk, yk+1 define the coordinates of the k-th windows.

F
(λ,θ)
k =

1

|Wk|
∑

(x,y)∈Wk

I
(λ,θ)
filtered(x, y) (40)

Descriptor Formation: We concatenate the average filter responses from all windows and all filters
to form the GIST descriptor:

GIST =
[
F

(λ1,θ1)
1 , F

(λ1,θ1)
2 , . . . , F

(λ1,θ1)
K2 , . . . , F

(λL,θM )
1 , . . . , F

(λL,θM )
K2

]
(41)

Where L is the number of scales and M is the number of orientations used for the Gabor filters.
The actual GIST descriptor is a vector that concatenates all these average responses, capturing the
dominant spatial structure of the scene. The specific parameters used in the Gabor filter, the number
of scales, orientations, and the size of the windows are set in the program.

3.3. The Range and Bearing Stimulus

The range and bearing stimulus is computed from the Lidar or the laser range finder sensors.
Let’s have the distance dt and the direction ϕt from the robot to an obstacle in the map. The position
of the robot is (xr, yr) and the position of the obstacle is (xo, yo).
The relative position of the obstacle with respect to the robot is:

∆x = x0 − xr (42)

∆y = y0 − yr (43)

The range is computed as the euclidean distance between the robot and the obstacle:

dol =

√
∆x2 +∆y2 (44)

The bearing is the angle between the robot’s heading ϕr and the line connecting the robot and
the obstacle. It is normalized to be between [−π, π] or [0, 2π] radians.

φ = arctan2(∆y,∆x)− ϕr (45)

The stimulus is computed with the equation (32).

4. Results and Discussion

We did the experiments using Matlab from Mathwork software with the image processing tool-
box. The colored images are extracted from indoor environment see Fig. 1 using an AOK-D camera.
We present here the results of our two contributions.

4.1. Results of the Feature Points Detection

In the Fig. 4a, our feature points maintain high repeatability (around 90%) indicating strong per-
formance in identifying the same features despite changes in orientation. Also in the Fig. 4b, the recall
of our detector is high comparing to the other features. This behavior illustrates the effectiveness of
using steerable filters for orientation invariance. We compare to various feature descriptors (AGAST,
BRISC, CENSURE, ORB, SURF, SIFT, FAST). Moreover, the Fig. 4c shows the predicted positions
of a robot along with the associated uncertainties (covariances), highlighting areas of higher or lower
confidence in the robot’s pose estimation within a defined operational space. We deduce that the
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confidence increases when the robot is far from its initial pose. Also, the Fig. 4d shows the estimated
positions of the robot. The Fig. 4e and Fig. 4f represent two scenes from a robot SLAM (Simulta-
neous Localization and Mapping) operation. The landmarks identified by the robot are shown as red
dots, while the blue ellipses around them represent the covariance of the landmark poses, indicating
the uncertainty in their estimated positions.

(a) The repeatability score (b) The recall of the detector (c) The predicted poses

(d) The estimated poses of the
robot after applying the

monocular SLAM

(e) The scene 1 with the poses of
the landmarks in the image with

their covariances

(f) The scene 2 with the poses of
the landmarks in the image with

their covariances

Fig. 4. The result of the new feature points

We conclude that high repeatability is essential for accurate visual SLAM techniques. The fact
that our method outperforms other well-known features suggests that changing the orientation of the
acquired images with steerable filters is an efficient technique for perception in robot navigation. Be-
sides, Reducing the uncertainty of the robot localization has real-life applications in making decisions
because as the robot moves, the uncertainty grows, and it needs to make real-time decisions to mit-
igate this. It might slow down to reduce the risk of collisions, increase the frequency of sensor data
processing, or return to a previously known position to recalibrate its pose.

4.2. Results of the Dynamic Neural Fields

The Fig. 5a shows the neural field when it responds to a significant visual-laser stimulus. It
rapidly adjusts, and then stabilizes its activity, maintaining a single-peak configuration as described
by the neural field theory. The Figs. 5b, 5c, 5d show the standard deviation of the error between
the pose of the robot using the neural field and the ground truth with and without the sensor fusion.
The fusion method generally has a lower standard deviation, indicating more accurate and consistent
performance compared to the laser-only method.

The Fig. 6 shows the robot’s motion path while avoiding obstacles (blue circles) using neural
fields stimulated by laser range data. The robot’s trajectory (marked by triangles) adjusts in real-time
to navigate around obstacles, ensuring smooth and efficient movement within the defined area. From
the second technique, we conclude that the more the DNF receives several types of stimuli, the more
the localization is accurate. We also deduce that the DNF’s activations depend on the type of stimuli.
This can be justified by the fact that the DNF uses Hebbian unsupervised learning, which is more

Younès Raoui, Accurate Robot Navigation Using Visual Invariant Features and Dynamic Neural Fields



ISSN 2775-2658 International Journal of Robotics and Control Systems
Vol. 4, No. 4, 2024, pp. 1584-1601

1597

(a) Time evolution of the field excitation u
as a function of time t.

(b) Comparison of localization error in the
x and y coordinates over time

(c) Comparison of localization error in the x
coordinates over time

(d) Comparison of localization error in the
y coordinates over time

Fig. 5. The results of the navigation with DNF

reliable if the sources are of different types; in our case, the gist, the range, and the bearing.

5. Conclusion

This paper presents two new techniques that ameliorate robot navigation. In the first technique,
we propose a novel feature point detector and visual descriptor applied to monocular SLAM. In the
second technique, we propose an algorithm that controls the robot’s motion with dynamic neural
fields that receive the GIST visual descriptor and the LIDAR scans.

We proved that our first method provides repeatable visual feature points that ameliorate the
monocular SLAM’s precision through steerable filters that ensure the invariance to the changes in the
orientations. Moreover, using several color spaces in the computation of the descriptor results in a
good matching of visual points, which is proven by the decrease of the uncertainty in calculating the
poses. Furthermore, in the second contribution, we showed that the fusion of both the GIST visual
descriptor and the LIDAR scans reduces the positioning error caused by detecting an obstacle.

These techniques represent a meaningful advancement in the field of robot navigation, offering
robust and efficient solutions that are applicable to a wide range of real-time scenarios such as au-
tonomous vehicles, drones, and robotic assistants for high speed navigation and efficient processing.

Furthermore, the research results and application prospects can be ameliorated with a pre-trained
sequential model instead of the dynamic neural fields to generate the robot trajectory [52]–[54] and
use of the CNN for developing real 3D invariant visual features.
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Fig. 6. The navigation with obstacle avoidance with the DNF in two times, the robot is represented
with a triangle and the obstacles are represented with circles
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[19] L. Ruotsalainen, A. Morrison, M. Mäkelä, J. Rantanen, and N. Sokolova, “Improving computer vision-
based perception for collaborative indoor navigation,” IEEE Sensors Journal, vol. 22, no. 6, pp. 4816–
4826, 2022, https://doi.org/10.1109/JSEN.2021.3106257.

[20] G. D. Molina, M. Hansen, J. Getchius, R. S. Christensen, J. A. Christian, S. M. Stewart, and T. Crain,
“Aas 22-113 visual odometry for precision lunar landing,” 2022, https://www.semanticscholar.
org/paper/AAS-22-113-VISUAL-ODOMETRY-FOR-PRECISION-LUNAR-Molina-Hansen/
fdb89e10da6e2587f5701e4d693958cc245f0353.

[21] F. Bellavia and D. Mishkin, “Harrisz+: Harris corner selection for next-gen image matching pipelines,”
Pattern Recognit. Lett., vol. 158, pp. 141–147, 2022, https://doi.org/10.1016/j.patrec.2022.04.022.

[22] E. Riba, D. Mishkin, D. Ponsa, E. Rublee, and G. R. Bradski, “Kornia: an open source differentiable
computer vision library for pytorch,” 2020 IEEE Winter Conference on Applications of Computer Vision
(WACV), pp. 3663–3672, 2020, https://doi.org/10.1109/WACV45572.2020.9093363.

[23] Y. Jin, D. Mishkin, A. Mishchuk, J. Matas, P. Fua, K. M. Yi, and E. Trulls, “Image matching across wide
baselines: From paper to practice,” International Journal of Computer Vision, vol. 129, pp. 517–547,
2021, https://doi.org/10.1007/s11263-020-01385-0.

[24] A. Fontan, J. Civera, and M. Milford, “Anyfeature-vslam: Automating the usage of any feature into visual
slam,” in Robotics: Science and Systems (RSS), 2024, https://doi.org/10.15607/rss.2024.xx.084.

Younès Raoui, Accurate Robot Navigation Using Visual Invariant Features and Dynamic Neural Fields

https://openaccess.thecvf.com/content_CVPR_2020/papers/Luo_ASLFeat_Learning_Local_Features_of_Accurate_Shape_and_Localization_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Luo_ASLFeat_Learning_Local_Features_of_Accurate_Shape_and_Localization_CVPR_2020_paper.pdf
https://doi.org/10.1109/CVPR.2019.00828
https://doi.org/10.1109/CVPR.2019.00263
https://doi.org/10.1109/3DV50981.2020.00123
https://doi.org/10.1109/ICCVW60793.2023.00224
https://doi.org/10.1109/ACCESS.2021.3130928
https://doi.org/10.1109/ACCESS.2021.3130928
https://arxiv.org/pdf/1805.09662
https://doi.org/10.1109/ICOMET.2018.8346440
https://doi.org/10.1088/1757-899X/879/1/012111
https://doi.org/10.1109/IAICT62357.2024.10617640
https://doi.org/10.1109/AHPCAI57455.2022.10087841
https://doi.org/10.1109/JSEN.2021.3106257
https://www.semanticscholar.org/paper/AAS-22-113-VISUAL-ODOMETRY-FOR-PRECISION-LUNAR-Molina-Hansen/fdb89e10da6e2587f5701e4d693958cc245f0353
https://www.semanticscholar.org/paper/AAS-22-113-VISUAL-ODOMETRY-FOR-PRECISION-LUNAR-Molina-Hansen/fdb89e10da6e2587f5701e4d693958cc245f0353
https://www.semanticscholar.org/paper/AAS-22-113-VISUAL-ODOMETRY-FOR-PRECISION-LUNAR-Molina-Hansen/fdb89e10da6e2587f5701e4d693958cc245f0353
https://doi.org/10.1016/j.patrec.2022.04.022
https://doi.org/10.1109/WACV45572.2020.9093363
https://doi.org/10.1007/s11263-020-01385-0
https://doi.org/10.15607/rss.2024.xx.084


1600 International Journal of Robotics and Control Systems
Vol. 4, No. 4, 2024, pp. 1584-1601

ISSN 2775-2658

[25] R. Elvira, J. D. Tardós, and J. M. M. Montiel, “Orbslam-atlas: a robust and accurate multi-map sys-
tem,” 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6253–6259,
2019, https://doi.org/10.1109/IROS40897.2019.8967572.

[26] J. Orr and A. Dutta, “Multi-agent deep reinforcement learning for multi-robot applications: A survey,”
Sensors, vol. 23, no. 7, p. 3625, 2023, https://doi.org/10.3390/s23073625.

[27] K. Sviatov, A. Miheev, S. Sukhov, Y. Lapshov, and S. Rapp, “Detection of obstacle features using neural
networks with attention in the task of autonomous navigation of mobile robots,” in Computational Science
and Its Applications – ICCSA 2020, pp. 1013–1026, 2020, https://doi.org/10.1007/978-3-030-58817-5
72.

[28] S. S. Gu, E. Holly, T. P. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates,” 2017 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3389–3396, 2017, https://doi.org/10.1109/ICRA.2017.7989385.

[29] L. Schulze and H. Lipson, “High-degrees-of-freedom dynamic neural fields for robot self-modeling and
motion planning,” pp. 3064–3070, 2024, https://doi.org/10.1109/ICRA57147.2024.10611047.

[30] J. Zhang, L. Jin, T. Deng, and M. Tahir, “Editorial: Learning and control in robotic systems aided with
neural dynamics,” Frontiers in Neurorobotics, vol. 17, 2023, https://doi.org/10.3389/fnbot.2023.1193119.

[31] J. Li, J. Chavez-Galaviz, K. Azizzadenesheli, and N. Mahmoudian, “Dynamic obstacle avoidance for
usvs using cross-domain deep reinforcement learning and neural network model predictive controller,”
Sensors, vol. 23, no. 7, p. 3572, 2023, https://doi.org/10.3390/s23073572.

[32] O. Bastani and S. Li, “Safe reinforcement learning via statistical model predictive shielding,” Robotics:
Science and Systems XVII, 2021, https://doi.org/10.15607/RSS.2021.XVII.026.

[33] H. Xing and L. Yu, “Target-driven multi-input mapless robot navigation with deep reinforcement learn-
ing,” Journal of Physics: Conference Series, vol. 2513, 2023, https://doi.org/10.1088/1742-6596/2513/1/
012004.

[34] G. Chen, L. Pan, Y. Chen, P. Xu, Z. Wang, P. Wu, J. Ji, and X. Chen, “Deep reinforcement learning of
map-based obstacle avoidance for mobile robot navigation,” SN Computer Science, vol. 2, no. 417, 2021,
https://doi.org/10.1007/s42979-021-00817-z.

[35] K. N. V. S. Varma and S. L. Kumari, “Robotic vision based obstacle avoidance for navigation of unmanned
aerial vehicle using fuzzy rule based optimal deep learning model,” Evolutionary Intelligence, vol. 17, pp.
2193–2212, 2024, https://doi.org/10.1007/s12065-023-00881-9.

[36] B. Wang, Y. Sun, N. Zhao and G. Gui, ”Learn to Coloring: Fast Response to Perturbation in UAV-Assisted
Disaster Relief Networks,” in IEEE Transactions on Vehicular Technology, vol. 69, no. 3, pp. 3505-3509,
2020, https://doi.org/10.1109/TVT.2020.2967124.

[37] K.-T. Wei and B. Ren, “A method on dynamic path planning for robotic manipulator autonomous obstacle
avoidance based on an improved rrt algorithm,” Sensors, vol. 18, no. 2,p. 571, 2018, https://doi.org/10.
3390/s18020571.

[38] R. Cimurs, J. H. Lee, and I. H. Suh, “Goal-oriented obstacle avoidance with deep reinforcement
learning in continuous action space,” Electronics, vol. 9, no. 3, p. 411, 2020, https://doi.org/10.3390/
electronics9030411.

[39] Z. Chu, F. Wang, T. Lei and C. Luo, ”Path Planning Based on Deep Reinforcement Learning for Au-
tonomous Underwater Vehicles Under Ocean Current Disturbance,” in IEEE Transactions on Intelligent
Vehicles, vol. 8, no. 1, pp. 108-120, 2023, https://doi.org/10.1109/TIV.2022.3153352.

[40] J. Cai, A. Du, X. Liang, and S. Li, “Prediction-based path planning for safe and efficient human-robot col-
laboration in construction via deep reinforcement learning,” Journal of Computing in Civil Engineering,
vol. 37, no.1, 2023, https://doi.org/10.1061/(ASCE)CP.1943-5487.0001056.

[41] C. Yan, G. Chen, Y. Li, F. Sun, and Y. Wu, “Immune deep reinforcement learning-based path planning
for mobile robot in unknown environment,” Applied Soft Computing, vol. 145, p. 110601, 2023, https:
//doi.org/10.1016/j.asoc.2023.110601.

Younès Raoui, Accurate Robot Navigation Using Visual Invariant Features and Dynamic Neural Fields

https://doi.org/10.1109/IROS40897.2019.8967572
https://doi.org/10.3390/s23073625
https://doi.org/10.1007/978-3-030-58817-5_72
https://doi.org/10.1007/978-3-030-58817-5_72
https://doi.org/10.1109/ICRA.2017.7989385
https://doi.org/10.1109/ICRA57147.2024.10611047
https://doi.org/10.3389/fnbot.2023.1193119
https://doi.org/10.3390/s23073572
https://doi.org/10.15607/RSS.2021.XVII.026
https://doi.org/10.1088/1742-6596/2513/1/012004
https://doi.org/10.1088/1742-6596/2513/1/012004
https://doi.org/10.1007/s42979-021-00817-z
https://doi.org/10.1007/s12065-023-00881-9
https://doi.org/10.1109/TVT.2020.2967124
https://doi.org/10.3390/s18020571
https://doi.org/10.3390/s18020571
https://doi.org/10.3390/electronics9030411
https://doi.org/10.3390/electronics9030411
https://doi.org/10.1109/TIV.2022.3153352
https://doi.org/10.1061/(ASCE)CP.1943-5487.0001056
https://doi.org/10.1016/j.asoc.2023.110601
https://doi.org/10.1016/j.asoc.2023.110601


ISSN 2775-2658 International Journal of Robotics and Control Systems
Vol. 4, No. 4, 2024, pp. 1584-1601

1601
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