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This paper presents three different topologies of feed forward neural network (FFNN) models for generating global, direct, and
diffuse hourly solar irradiance in the city of Fez (Morocco). Results from this analysis are crucial for the conception of any solar
energy system. Especially, for the concentrating ones, as direct component is seldom measured. For the three models, the main
input was the daily global irradiation with other radiometric and meteorological parameters. Three years of hourly data were
available for this study. For each solar component’s prediction, different combinations of inputs as well as different numbers of
hidden neurons were considered. To evaluate these models, the regression coefficient (R2) and normalized root mean square
error (nRMSE) were used. The test of these models over unseen data showed a good accuracy and proved their generalization
capability (nRMSE= 13.1%, 9.5%, and 8.05% and R= 0.98, 0.98, and 0.99) for hourly global, hourly direct, and daily direct
radiation, respectively. Different comparison analyses confirmed that (FFNN) models surpass other methods of estimation. As
such, the proposed models showed a good ability to generate different solar components from daily global radiation which is
registered in most radiometric stations.

1. Introduction

Morocco is a fossil energy deficient country (95% imports)
but has an impressive environmental wealth. It is charac-
terised by an intensive solar irradiation, as it lies in a sunny
belt, which favours the utilization of solar energy.

Morocco has launched one of the biggest solar projects:
the world’s largest concentrated solar power plant (Figure 1),
costing about nine billion dollars, with a combined capacity
of approximately 2GW, to be completed by 2020.

The installation of any solar power system requires high-
quality solar radiation measurements in order to size and
simulate the system’s functioning. Lack of long series of data
or poor quality data series can combine errors in plant
design, sizing, and performance forecasting, the thing that
impacts negatively on the investment. Unfortunately,

measures of solar radiation are usually inaccurate and rare
over the world [1], especially in Morocco. Due to the measur-
ing device’s price, there is only a small number of solar
stations. These stations, in addition to being insufficient,
generally measure only global radiation. However, the
knowledge of direct solar component is necessary for
concentrating solar power plant (CSP) or concentrated pho-
tovoltaic (CPV) sizing. This component is difficult to
measure because it requires the use of a pyrheliometer
equipped with solar tracking system, which is very expensive.

On the other hand, sizing correctly all types of solar
system or simulating their performance requires at least,
daily or, even better, hourly values of different solar radiation
components. Hence, it seems that elaborating relationships
between available daily global data and the direct and diffuse
solar irradiation ones at different time steps can be beneficial.
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Previous studies have stated that artificial neural net-
works (ANNs) are particularly suitable to reach this goal.
Indeed, artificial neural networks (ANNs) are powerful when
applied to problems whose solutions require knowledge that
is difficult to specify but for which there is a huge quantity of
examples. The neural network approach does not need to
know any information regarding the process that generates
the data. Recently, ANNmodels have been used in solar radi-
ation modelling for many locations with different climates.
Pertaining researches have been done in countries such as
Greece, Saudi Arabia, Turkey, Egypt, Cyprus, Spain, India,
Oman, Algeria, the UK, and Malaysia [2–33]. But no work
seems to exist in Morocco. Thus, the purpose of this paper
is the generation of horizontal hourly global, direct solar irra-
diations and daily direct radiation using ANN’s models.
Daily global solar radiation, which is the most available
component, and different astronomical variables are used as
input to the ANN models.

The paper is organized as follows. In the first paragraph,
we present a bibliographical review that illustrates the ability
of artificial neural networks (ANNs) to elaborate nonlinear
relationships between input and output data. Such relations
were developed between meteorological parameters and
global solar irradiations for different time scales especially
monthly, daily, or hourly mean values but rarely for direct
solar component. In the second paragraph, we present the
proposed feed forward neural networks (FFNNs) and the
statistical parameters to evaluate their performances.

In the third part, we give a description of our data mea-
surement station where different meteorological variables
are measured. A database choice criteria will be defined.
Then, for each solar component, the methodology that was
developed to address different issues will be applied and
results will be discussed. Finally, conclusions and perspec-
tives for further studies are presented.

2. Bibliographical Review

Modelling or predicting solar irradiation methods can be
classified in three categories:

(i) Methods that use empirical relations between
clearness index (Kt) and sunshine fraction (Sf); Kt

is defined as a ratio of horizontal global solar irradi-
ation on extraterrestrial irradiation while Sf is the
sunshine duration divided by the theoretical day
length. Generally, most of these methods have not
been very accurate as they used high time steps or
averaged data [26, 34, 35]. Stochastic models have
been also applied at different time scales [36–38].

(ii) The second category concerns models considering
irradiative transfer modes, solar radiation, and earth
atmosphere exchanges such as Rayleigh diffusion
and absorptions by ozone, aerosols, and water
vapour [26, 39–41]. Besides the fact that these
models are complex, they only estimate solar
irradiation in clear sky conditions.

(iii) The most recent category is based on artificial intel-
ligent methods. Nowadays, different models based
on the artificial neural networks (ANNs) were intro-
duced in literature for modelling and prediction of
solar radiation data from meteorological and
geographical parameters. ANNs are powerful when
applied to problems whose solutions require knowl-
edge that is difficult to specify but for which there is
an abundance of examples. Indeed, for an ANN
approach, we need a long-term data in order to get
a better model. The developed model can be used
either for forecasting data series, estimating solar
irradiation from exogenous meteorological data, or
for extrapolating solar irradiation from data mea-
sured on other sites [14, 42–44]. In fact, FFNNs
can be used for any kind of input to output mapping.
A feed forward network with one hidden layer and
enough neurons in the hidden layers can fit any
finite input-output mapping problem [45].

This study belongs to this last category: While in litera-
ture many ANNs have been developed for the prediction of
global radiation, estimation of the direct irradiation has been
less investigated [46]. Thus, different architectures of the feed
forward neural network (FFNN) models were proposed to
predict from daily global solar radiation the direct and diffuse
solar radiation at different time steps. All components are
considered on a horizontal surface.

3. Conception of the Artificial Neural Network
(ANN) Model

3.1. Artificial Neural Networks. Artificial neural networks
are information processing systems that are nonalgorith-
mic and massively parallel. They are composed of layers
of parallel units called neurons. These neurons are
connected with links called synapses. Each neuron has its
own weight computed from the learning from data. They
receive inputs over their incoming connections, perform
nonlinear operations generally, and output the final
results. ANNs have been applied in various aspects of
science and engineering [47, 48].

There are twomajor categories of ANN: feed forward and
feedback (recurrent) networks. The main difference between

Figure 1: First part of the Moroccan Solar Plan “Noor1”
inaugurated on February 2017.
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these categories is the existence of one or more loops in
recurrent models, while feed forward networks are organized
into layers connected strictly in one direction from the first
layer to the last one [12].

3.2. Feed Forward Neural Network (FFNN). FFNNs are the
most commonly used type of multilayer neural networks. A
schematic diagram of the basic architecture is shown in
Figure 2(a). Each neuron in the hidden layer (Figure 2(b))
sums up its inputs xk after weighting them with the strengths
of the respective connections wik from the input layer and
calculates its output yi as follows:

yi = f 〠
N

k=1
wikxk 1

f is a transfer function that can be a sigmoid, hyperbolic tan-
gent, or radial basis function. The final output in the last layer
is computed similarly.

The neural network adopted in our study is a multilayer
feed forward backpropagation network. The backpropaga-
tion is the workhorse of learning with ANNs. It consists to
adjust the weights of the neurons by minimizing the measure
of the difference between the measured data and the pre-
dicted data obtained by (1). Inside the training, the neurons’
weights are being updated by reinjection of the error inside
the network.

Our network was designed and trained using MATLAB’s
code and MATLAB’s neural network toolbox. A simplified
schematic diagram of this network is shown in Figure 2(c);
the main characteristics of this model are to be mentioned
as follows:

(i) There is one hidden layer (the user can change the
number of hidden neurons).

(ii) The transfer function adopted is sigmoidal while the
output node has a linear activation function.

(iii) The training algorithm is backpropagation based on
a Levenberg-Marquardt (LM) minimization method
which is the most commonly used [12, 48].

(iv) The learning procedure is controlled by a cross-
validation technique based on a random division of
the initial set of data in 3 subsets (training, validation
process control, and testing).

3.3. Model Evaluation. To evaluate the quality of estimation
and ANN performances, several parameters can be used such
as the following [49].

Root mean square error (RMSE) and normalized RMSE
(nRMSE) are expressed as follows:

RMSE = 〠
N

i=1

yi − xi
2

N
,

nRMSE =
〠N

i=1 yi − xi
2/N

x

2

Determination coefficient R2 is defined by the equation:

R2 =
〠N

i=1 yi – y xi – x
2

〠N

i=1 yi – y 2 〠N

i=1 xi – x 2
3

Mean absolute error (MAE) and normalized mean abso-
lute error (nMAE) are defined by the following equation:

MAE =
〠N

i=1∣ yi − xi ∣
N

,

nMAE =
〠N

i=1∣ yi − xi ∣
Nx

4
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Figure 2: (a) Feed forward neural network. (b) Architecture of an artificial neuron. (c) Diagram of the used FFNN in MATLAB.
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yi denotes estimated values and xi the measured ones; their
respective average values are defined as x =∑N

i=1xi/N ; y =
∑N

i=1yi/N with N , the data number.

(i) Root mean square error (RMSE) shows the difference
between the measured values and the predicted ones;
it indicates the scattering of data around linear lines.
The approximation is better if RMSE is minimal
(tends to 0).

(ii) The determination coefficient (R2) expresses the
correlation between the real values and the estimated
ones; the best approximation corresponds to the
highest R2 (closer to 1).

4. Meteorological Data and
Database Development

4.1. Meteorological Data. The data used in this paper were
measured in a radiometric station supervised by our labora-
tory and installed in the Faculty of Science and Technology
in Fez (Morocco) (latitude: 33°56′-N; longitude: 4°99′-W)
at an altitude of 579m. The site’s climate patterns can be
summarized by dry and hot summers and cold winters.

Our station measures global irradiance (Gh), direct
normal irradiance, diffuse irradiance (Dfh), wind speed

(WSh), wind direction (Wdh), air temperature (Th) and rela-
tive humidity (Hrh). The station has also a pluviometer to
measure precipitations and some radiometers to measure
spectral components of solar radiation, in particular, the
UV and the active photosynthetic radiation APR. All the
measure instruments are related to a data acquisition
board (CR10X) with a storage module. Data are measured
and recorded every 5 seconds and then converted to
hourly averages.

Hence, three years of hourly data recorded from the 1st
January 2010 to 31st December 2012 are available with
26304 data records for this study. In order to extract outlier
values, each parameter was examined. Then data before sun-
rise and below sunset periods were also deleted to avoid the
mask effect or a nonreliable response of pyranometers at high
zenith angle on solar data [50]. Therefore, we have 13,085
records for each variable mentioned above. All these vari-
ables are going to be used as input parameters to the ANN
models. Figure 3 presents the variation of horizontal direct
irradiation (HDI)h, diffuse (Df)h, and global (Gh) solar radi-
ation versus time over two years.

In addition to measured variables, we have calculated the
sunshine duration (SD) defined by the World Meteorological
Organization as the time interval when direct solar radiation
exceeds 120 (W m−2). It is a radiometric parameter, giving
information about the site’s nebulousness [51]. Besides, we
have considered some astronomical variables: declination
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Figure 3: Hourly direct, diffuse, and global solar radiation for 2010 and 2011.
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angle (δ) and daylight hours (DH), the first permits to desig-
nate a specific day; the second indicates the period of the year
considered. We have also calculated sunset hour angle (Wss),
sun hour angle (HA), extraterrestrial solar radiation on hor-
izontal plan (ER), and the sun fraction (Sf), defined as a ratio
of solar duration to daylight hours. All these astronomic var-
iables have been computed using analytic expressions
detailed in the Appendix.

4.2. Database Elaboration Criteria. The ANNmodels’ perfor-
mance depends on the choice of the best combination of
weather variables as input, training algorithm, and ANN
architecture design. The most important key task in time
series prediction is the selection of the input variables. It is,
in fact, a prerequisite stage as there is no systematic approach
to adopt for nonlinear ANN models [45]. However, we must
take into account some criteria such as the following:

(i) Parsimony which consists in developing the simplest
ANN architecture with a minimum of inputs, hidden
layers, and hidden neurons while keeping high
performances.

(ii) Avoid redundant inputs (they contain the same
information) and choose the best-correlated vari-
ables to solar irradiation. Indeed, too many inputs
can reduce the model efficiency [51].

To deal with this issue, we will either compute the corre-
lation between different input variables and the target vari-
able and then decide of the best combination or consider
many combinations of variables during the training phase
and choose the one that gives the best results.

5. Results and Discussion

5.1. Prediction of Hourly Global Solar Irradiation from
Daily Radiation. As mentioned before, daily global solar
radiation, when measures exist, is the most common avail-
able measure with relatively long series of data. But to
carry out an accurate solar system sizing and evaluation,
hourly data are needed. In this section, a FFNN model
was trained to generate hourly horizontal global solar radia-
tion. The daily global radiation (GD) is the main input in
addition to some calculated variables especially declination,
hour angle, sunset hour angle, and extraterrestrial solar radi-
ation on horizontal plan.

To implement the network, different combinations of
these parameters have been proposed as matrix input (stim-
uli) to FFNN models with horizontal (HDI)D as target. For
each combination, different configurations of the neural net-
work were tested by changing the number of hidden neurons.
Training was repeated up to 10 times for each number of hid-
den neuron so that we choose the best configuration. Table 1
shows the best results for training through the correlation
coefficient R and RMSE. The training was done over 2 years
(8714 records).

According to these results, the best FFNN model corre-
sponds to three nodes in the input layer (HA, Wss, and GD)
and 10 neurons in the hidden layer. To ensure the efficiency

of the developed network to generate synthetic hourly data, it
was tested over unseen data (1 year, 4371 records).

Figure 4 shows a regression plot which represents pre-
dicted values of hourly global solar radiation for the year
2012 using the proposed model versus the measured ones.
It is clear that there is a good correlation: R = 0 98 and
RMSE=0.061 kWh/m2.

To discuss the validity of these results, the proposed
model was compared with accurate empirical models. A
comparison between our model and Liu-Jordan and
Collares-Pereira and Rabel (C-P&R) models is carried out.
A brief description of these models is given in the Appendix.
In Figure 5, we show a sample (8 solar days) to illustrate the
conducted comparison. It appears that the three models can
predict hourly solar radiation data accurately in clear sky
days. Nevertheless, sometimes the Liu-Jordan model tends
to underestimate values. As it can be seen, the proposed
model is more accurate than the other two models. However,
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Figure 4: Regression plot of measured and predicted Gh.

Table 1: Best learning’s performances with Gh as target.

Matrix Input Hidden neurons RMSE (kWh/m2) R

[HA, Wss, GD] 10 0.0580 0.9813

[δ, HA, Wss, GD] 12 0.0583 0.9809

[HA, Wss, ERh] 10 0.0783 0.8978
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Figure 5: Comparison between ANN results and other procedures
of estimation.
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for the three models the prediction’s accuracy is lower on
cloudy days than on sunny days but still acceptable as most
of the solar radiation prediction model’s accuracies degraded
on cloudy days [52–54].

In Table 2, we reported a deepened evaluation of the
three models using nMAE, nRMSE, and R2. Indeed, one year
of hourly data was generated using the three models. Results
show that the proposedmodel exceeds the other models. This
implies that the proposed model has more ability to predict
future data based on the RMSE value. Moreover, it is more
powerful in predicting hourly solar radiation according to
the nMAE value.

Consequently, it is clear that the proposed model exceeds
the other empirical models. In addition, it has the capacity of
learning and handling huge data sets with nonlinear behav-
iour and stochastic nature. Even so, the empirical models
can exceed our FFNNmodel in case of lack of long series data
records necessary for learning processes.

5.2. Prediction of Hourly Horizontal Direct Solar Irradiation
from Daily Radiation. While most applications adopt the
global solar radiation, the concentrating solar plants (CSP)
require, generally, an accurate estimation of direct solar
irradiation at different time scales [55]. The direct irradiation
forecasting represents an important aspect for a full solar
energy potential evaluation. Global radiation measurements
are usually obtained in most of the radiometric stations,
whereas the data availability of its direct component is more
limited. Moreover, when the direct component is measured,
there is no extensive data series. Models to generate the direct
solar resources are needed in order to establish its typical
behaviour for energy applications.

In this paper, we considered horizontal direct solar irra-
diation (HDI), the normal component (NDI), if needed,
can be calculated using the following equation:

NDI = HDI
cos Az

, 5

where Az denotes the zenith angle.
In particular, in this, paragraph we deal with hourly hor-

izontal direct irradiation (HDI)h as target. Thus, to imple-
ment a suitable FFNN model, we have first defined the
input variables to the model. To this end, a set of heteroge-
neous parameters has been considered. Especially, daily
global radiation (GD) combined to astronomical, climatic,
and radiometric variables (δ, SD, HA, GD, Kt, Wss, and Sf).

GD is the main variable as it provides information about
the climatic and meteorological patterns. The hour angle
and declination angle are information utilized to train our
FFNN with considering information about sunlight duration

and the day considered. Mainly, the HA has an effect on the
optical path length through the atmosphere; then, it can
replace the relative air mass. The clearness index Kt repre-
sents the most relevant factor in the (HDI)h prediction. In
fact, it represents an indirect measure of the atmosphere
filtering action.

Table 2 shows the best performance for different archi-
tectures of the FFNN model for training process. It is worth
recalling that the learning process is done over data for
2010 and 2011 and training repeated up to 10 times for each
number of hidden neurons with the Levenberg-Marquardt
algorithm to do fitting of the hourly horizontal direct solar
radiation.

From Table 3, we notice that models 1 and 7 (7 has the
same variables as 1 in addition to δ) give the best results.
However, model 7 surpasses slightly model 1 especially in
terms of RMSE. Thus, model 7 with five variables was
adopted to carry on the hourly (HDI) generation as δ is a
costless parameter. The generalisation of the model was eval-
uated by testing the model over data corresponding to 2012.
Results are satisfactory as it canbe seen in the regressionplot of
Figure 6 which represents predicted (HDI)h versus the mea-
sured ones. Indeed, R = 0 982 and RMSE=0.041 kWh.m−2

during test process. This high correlation value implies that
the proposed model makes accurate predictions.

In addition to that, both predicted and measured hourly
(HDI) values were plotted versus time for the whole year.
We also plotted the error defined as the difference between
predicted and measured values. For a good illustration,

Table 3: Best performance of learning processes for different FFNN
configurations.

Model Input matrix
Hidden
neurons

R
RMSE

(kWh/m2)

1 SD, HA, GD, Kt 15 0.980 0.0707

2 SD, GD, Kt 10 0.846 0.1224

3 Sf, HA, GD, Kt 15 0.953 0.0707

4 Sf, HA, Kt 12 0.892 0.1140

5 SD, HA, Kt 10 0.920 0.0836

6 SD, HA, GD 10 0.891 0.1090

7 δ, SD, HA, GD, Kt 20 0.984 0.0390

8 δ, SD, HA, GD, Kt, Wss 10 0.950 0.0707
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Figure 6: Predicted versus measured hourly HDI.

Table 2: Statistics for different methods of estimation of Gh.

Model nMAE (%) nRMSE (%) R2

Liu-Jordan 15.6 20.2 0.91

(C-P&R) 14.3 18.8 0.92

FFNN (testing) 12.0 13.1 0.96
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Figure 7 presents one month from each season. Generally,
there is a good agreement. However, the quality of the fitting
differs from a season to another and, as it can be seen, the
error scatter is getting closer and closer to zero from winter
to summer.

Concerning the diffuse component, it is worth mention-
ing that once the direct radiation is predicted, the diffuse
component can be determined by subtracting direct radia-
tion from global radiation on a horizontal surface.

5.3. Prediction of Daily Horizontal Direct Solar Irradiation
from Daily Radiation. In some meteorological stations, there
are relatively long series of only daily values of global solar
radiation, temperature, and relative humidity. The aim in
this section is to show how we can use these data to predict
daily HDI (HDI)D using FFNNs.

For this analysis, we computed daily values for all vari-
ables from the recorded hourly ones to implement FFNN
models. We kept the same scripts for variables and just
replaced subscript “h” by “D.”

1095 data records are available; 730 are used for the
learning process, and the rest is used to test the model (365
records). As mentioned before, a correlation analysis was car-
ried out between the input variables and (HDI)D. Especially,

a set of nine heterogeneous parameters have been considered:
horizontal extraterrestrial solar radiation (ERD), global solar
radiation (GD), mean temperature (TD), sunshine duration
(SD), sunshine fraction (SF), wind speed (WSD), declination
angle (δ), daylight hours (DH), and relative humidity (HrD).

Results, reported in Table 4, show that the most
effective input parameters are global solar radiation and
sunshine duration.
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Figure 7: Measured and predicted hourly (HDI) for four months representing different seasons.

Table 4: Correlation of different parameters to (HDI)D.

Variables Correlation to (HDI)D
Mean temperature (TD) 0.520

Sunshine duration (SD) 0.927

Declination angle (δ) 0.65

Relative humidity (HrD) −0.669
Wind speed (WSD) 0.687

Global solar radiation (GD) 0.940

Daylight hours (DH) 0.558

Extraterrestrial radiation (ERD) 0.556

Sunshine fraction (SF) 0.865
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Once the most effective input variables were defined,
different combinations of these parameters have been
proposed as matrix input to FFNN models with hori-
zontal (HDI)D as target. Table 5 shows the best results
of training for all the analyzed combinations in terms
of nRMSE and R.

It can be noted that the network with three input vari-
ables (sunshine duration (SD), global solar radiation (GD),
and declination angle (δ)) reaches the best results for the
(HDI)D prediction.

This configuration has been used to test the capability
of the model of generalisation. Indeed, the model was

tested over unseen data corresponding to 2012 (not used
for learning process).

Figure 8 shows a regression that represents the predicted
daily direct solar radiations versus the corresponding mea-
sured values in a test phase. It is clear from this plot that there
is a good agreement between the predicted values and the
measured ones. Such result is confirmed by R = 0 99 and a
nRMSE=8.05%.

In Figure 9, we plotted both measured and predicted
daily direct solar radiation versus time corresponding to test
period. Globally, there is no significant difference between
the two curves.

For more illustration and to get an idea of the monthly
direct solar irradiation in Fez, we represent, in Figure 10, the
monthly average of predicted and measured direct solar radi-
ation. There is a net improvement compared to Figure 9 as
daily fluctuations are attenuated in monthly averages.
Moreover, we notice that even for months with low solar
radiation the ANN model gives relatively accurate predic-
tion. Most of the monthly averages of (HDI)D fluctuate in
the range of 2.5–6 kWh/m2.

Table 5: Best performance of FFNN architectures.

Input matrix Hidden neurons nRMSE (%) R

SD, GD 12 15.40 0.97

SF, GD 15 15.46 0.96

SD, GD, δ 10 7.73 0.992

SD, GD, ERD 10 8.60 0.989

SF, GD, ERD 10 12.01 0.98

0 2 4 6 8
0

2

4

6

8

Measured daily (HDI) (kWh/m2)

Pr
ed

ic
te

d 
da

ily
 (H

D
I)

 (k
W

h/
m

2 )

Figure 8: Regression plot of measured and predicted daily
horizontal direct irradiation.
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Figure 9: Measured and predicted daily horizontal direct
irradiation for test process.
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Figure 10: Comparison between the monthly averages of measured
and predicted horizontal direct irradiation (HDI).
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Figure 11: Regression plot of measured and estimated horizontal
direct solar radiation.
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To evaluate our model, we compare its prediction with
estimation of (HDI)D with another approach. The direct
solar radiation analysis, for a specific location, is often calcu-
lated starting from the global irradiance data registered. It is
estimated by means of the decomposition model [56].

To estimate (HDI)D using GD, we begin by estimating the
diffuse DfD using empirical statistical relations between the

diffuse fraction (Kd) defined as the ratio of diffuse radiation
to global radiation and the clearness index Kt.

Generally, such relations are locally dependent, even if in
many studies it is claimed to develop relations for different
locations. Thus, to deal with this issue, we used our data base
to plot Kd versus Kt. The fit of the resulting scatter points can
be expressed by the following equation:
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Figure 12: Comparison between estimated, predicted, and measured daily direct solar radiation.
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Figure 13: Cumulative distribution function between predicted and measured values.
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Kd = 3 74K3
t − 5 75K2

t + 1 37K t + 0 72 6

The fitting is good since the correlation coefficient is 95%
and RMSE equals to 0.07.

Hence, the diffuse DfD can be calculated from (6) and
(HDI)D can be estimated using the following equation:

HDI est = GD −DfD 7

In order to evaluate results from this procedure, we first
plotted estimated daily direct solar radiation (HDI)Dest

versus the real values of (HDI)D (Figure 11). It is clear that
the quality of fit is not as good as in Figure 8; this degradation
is seen indeed in R that becomes equal to 0.93 and
nRMSE=17.5% instead of 8.6% for FFNN prediction.

Moreover, by considering data for 2012, we plotted,
simultaneously, the estimated direct solar radiation using
(6), the one predicted with the proposed FFNN and their
relative real data. To better illustrate the difference between
the two approaches, we represent a zoom in zones of good
(Figure 12(a)) and bad agreements (Figure 12(b)).

From these figures, it appears clearly that prediction with
the proposed model is more accurate and exceeds estimation
with statistical relations (6).

Finally, we have plotted the cumulative distribution
function for both measured and predicted series for each
solar component studied (Figures 13(a), 13(b), and 13(c));
as can be seen, obtained results are almost confused with
measured data.

Therefore, in point of view statistical test (goodness test),
we can conclude that the predicted solar irradiance compo-
nents with different FFNN’s topologies are satisfactory.

6. Conclusion

To overcome the lack of accurate long series of solar data,
needed for solar systems optimal sizing, especially for
concentrating solar plant, an ensemble of FFNNmodels were
trained to predict different components of solar radiation was
presented in this research paper. These components are
hourly global, daily, and hourly direct solar radiation. Three
different architectures of FFNN models were used. In case of
having daily global radiation for long series thanks to our
model, hourly global radiation can be predicted. The
generated data are not only satisfactory (R = 0 98,
RMSE=0.061 kWh/m2) but surpass those estimated from
empirical methods. For concentrating solar plant design, the
developed FFNN models can provide long series of either
(HDI)h or (HDI)D with a good accuracy (R = 0 98;
nRMSE=9.5% and R = 0 99; nRMSE=8.05%, resp.). The
horizontal diffuse component is determined by subtracting
direct radiation from global radiation on a horizontal surface.

Additionally, (HDI)D series were estimated using an
equation developed for Fez. Results’ accuracy shows the
superiority of FFNN model.

The cumulative distribution functions between gener-
ated and measured data were computed for each studied
component, and results confirm the good performances
of FFNN models.

Finally, our models can provide synthetic series for differ-
ent solar radiation components to be used in optimal sizing
and planning of solar energy systems, especially for concen-
trating solar plant.

We look forward to apply this approach in further studies
using data from other locations to develop a model that
represents all Moroccan’s locations.

Appendix

A. Calculation of Horizontal Extraterrestrial
Solar Radiation (ER)h

To calculate horizontal extraterrestrial solar radiation (ER)h
for each hour, two geographical parameters must be calcu-
lated: solar declination “δ” and zenith angle Az.

(i) Solar Declination (δ). δ is the angle between the Sun’s
rays and the Earth’s equatorial plane and depends on
the day number dn via the day angle B defined by
Iqbal [41] as follows:

B = 2π dn − 1
365

δ rad = 0 006918 − 0 399912 cos B + 0 070257 sin B

− 0 006758 cos 2B + 0 000907 sin 2B
+ 0 002697 cos 3B + 0 00148 sin 3B

A 1

(ii) Zenith Angle (Az). Az is the angle between the sun
and a horizontal surface [41]; it influences the quan-
tity and the quality of the solar radiation; when it is
low, its cosines are maximal and the optical path is
minimal; and the incident radiation is less absorbed
and the solar radiation maximum. The zenith angle
is calculated at the middle of the considered hour
by the following equation:

cos Az = sin δ sin La + cos δ cos La cos HA ,
A 2

with “La” the latitude and (HA) the hour angle calculated
from the true solar time ts by the following equation:

HA degrees = 15 12 − ts A 3

The horizontal extraterrestrial solar radiation (ER)h in
Wh m−2 is computed by integration of the extraterrestrial
solar radiation Ie inW.m−2 on the time period. Ie is calculated
by Iqbal [41] as follows:

Ie = I0E0cos Az, A 4

where I0 is the solar constant (I0 = 1367W m−2), E0 the
eccentricity factor taking into account the variation of the
earth-sun distance (dimensionless) [38]:
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E0 = 1 00110 + 0 034221cos G + 0 001280sin G

+ 0 000719cos 2G + 0 000077sin 2G
A 5

B. Empirical Models for Calculating Mean
Hourly Solar Radiation

According to the literature, there are some empirical models
developed for calculating hourly solar radiation from daily
solar radiation. Among the most accurate models, Liu and
Jordan proposed in [57] the following to calculate hourly
solar radiation:

Gh
GD

= π/24 cos HA − cos Wss
sin Wss − 2π Wss /360 cos Wss

B 1

On the other hand, Collares-Pereira and Rabel (C-P&R)
verified the previous model in [58] and propose the following
for calculating mean hourly solar radiation:

Gh
GD

= a + b cos HA π/24 cos HA − cos Wss
sin Wss − 2π Wss /360 cos Wss

,

B 2
where the coefficients a and b are defined as follows:

a = 0 409 + 0 5016 sin Wss − 60 ,
b = 0 6609 − 0 4767 sin Wss − 60 B 3

Nomenclature

ANN: Artificial neural network
Az: Zenith angle
δ: Declination angle
DfD: Daily diffuse irradiance
Dfh: Hourly diffuse irradiance
DH: Day light hours
E0: Eccentricity factor
ERD: Daily extraterrestrial solar radiation
ERh: Hourly extraterrestrial solar

radiation
FFNN: Feed forward neural network
GD: Daily global radiation
Gh: Hourly global irradiation
HA: Sun hour angle
(HDI)D: Daily horizontal direct irradiation
(HDI)est: Estimated (HDI)
(HDI)h: Horizontal direct irradiation
HrD: Daily relative humidity
Hrh: Hourly relative humidity
I0: Solar constant
Kt: Clearness index
Kd: Diffuse fraction
La: Latitude
MAE: Mean absolute error
NDI: Normal direct irradiation
nMAE: Normalized mean absolute error
nRMSE: Normalized root mean square error
RMSE: Root mean square error
SF: Sunshine fraction
TD: Daily air temperature

Th: Hourly air temperature
ts: True solar time
WdD: Daily wind direction
Wdh: Hourly wind direction
WsD: Daily wind speed
Wsh: Hourly wind speed
Wss: Sun set hour angle.
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