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Abstract

This article deals with robot self localization and mapping. The robot
equipped with camera and RFID antennas navigates in a commercial center
with motion and interaction with a user. It must know its spatial position and
its orientation as it should guide correctly the user. We apply for that RFID
and vision based self localization. We deploy RFID tags and visual landmarks
in our environment. When the robot navigates, the predicted positions are
affected by the noise. To correct them, we apply first a sequential Monte-
Carlo localization based on the particle filter. We use an active localization
method built on the theoritical basis of information entropy to improve the
positioning accuracy. Second, we use visual landmarks and a Pinhole camera
model to have the coordinates of the feature points in the camera. Then we
describe two methods of robot mapping which use the positions pre-computed
based on a probabilistic measurement model of RFID readers which allows us
to accurately localize RFID tags in our environment.

Keywords: Robots, Localization, Mapping, Extended Kalman Filter, Particle
Filter, Monte-carlo localization, RFID, Visual landmarks, Entropy, Pinhole Camera
Model
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1 Introduction

The roboticists work for making the navigation in cluttered areas more efficient and
safe. The robot has to execute tasks while communicating with people that are in
its environment. Such environment may be complex and dynamic like shopping
centers or airports. Also, the robot has to avoid dynamic obstacle and perform
efficient self localization. This work aims to learn to a trolley advanced behaviors
so as to assist a user when doing shopping in a commercial center. To interact with
the environment, the trolley is equipped with many sensors for detecting, tracking
and identifying its user either through vision, Radio Frequency Identification, audio,
as well as with haptic, sterio. To navigate safely in the store and to locate itself, it
has to use RFID and vision. Commonly, we consider 4 scenarios for interaction
between the trolley and the user ([1]) :

- the trolley passive mode, using a haptic interface, for a person who may need
a walking aid;

- the trolley active mode, using a haptic interface, for a person who wants more
services or who may need a walking aid;

- the trolley passive mode, using a multimodal interface, for an ”agile” person
used to the shopping center.

- the trolley active mode, using a multimodal interface, for an “agile” person
who requires more services.

This work focuses on developing functions for self localization and mapping.
Missions are defined in terms of localization and spatial consistency and robust
control are ensured by it. In fact, the robot is instantly localized with its position
X, y and its orientation ?. At each time instant, it requires to know these coordi-
nates so that it can reach its objective with a high accuracy. Two applications are
sought. In one application, we use first RFIDs as landmarks. So we equip our robot
with RFID antennas and at the same time we place RFID tags in the extremities of
corridors. In order to do self localization of the robot, we apply two approaches,
one is deterministic based on the Kalman filtering and the other is stochastic based
on the particle filter. This latter is more realistic because it takes into account the
uncertainties. Then, we propose a technique to enhance the location information
with data of antennas which don’t have observations and apply an active method to
determine the robot’s actions by planning based on localization uncertainties. Un-
certainties, which can be quantified as information entropy depends on the route
that the robot used to explore the environment ([2]). Secondly, we use visual land-
marks for localization. To perceive these landmarks, we use the simplest model
which is the Pinhole camera model. Besides, in each part, we show the results of
robot navigation on a predefined map. The other application is concerned with the
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mapping with RFID tags. By applying the model perception of the RFID antennas,
we estimate the position of tags. This is done with a known trajectory of navigation.
We propose two algorithms, deterministic and probabilistic, which construct a map
with RFID tags. This paper is organized as follows. After discussing related works,
we will present the metrical method for self localization in section 3. Then we de-
scribe stochastic localization with par- ticle filter. In section 5, we describe how
we can localize our robot with visual landmarks using the Pinhol camera model.
Finally, we present a deterministic and bayesian methods for mapping with RFID
tags.

2 Related works

Trajectory can be estimated by using low cost passive RFID tags and odometry in
unknown environment. This is a prerequisite for mapping RFID with particle filters
approach without a reference positionning systems. This method avoids the noisy
nature of RFID measurements and the absence of distance and bearing information
as it is based on a non-parametric model for spatial relationships between RFID
measurements. One of the first surveys of localizing a mobile robot via RFID was
developed by Hanel et al. ([3]) They used a probabilistic sensor model for their
RFID reader. They asso- ciate the probability of tag detection with the relative posi-
tion of their tag with respect to the antennas. This model was used to map the posi-
tions of passive RFID tags shown on a previously computed maps learned through
laser based SLAM algorithm. The positions of the tags are represented by a number
of particles, and weights are updated at each detection of the tag. Another set of
particles is used to represent the robot pose according to the MonteCarlo localiza-
tion. Montemerlo et al ([4]) work concerned with FastSLLAM to generate consistent
maps computationally with laser range finders. Their transponders positions are not
simultaneously mapped, and the reconstruction of the robot trajectory depends on
the sensor reading and loop closure. Hanel et al ([3]) used laser based FastSLAM to
structurate the trajectory of their robot as well as the positions of passive UHF RFID
tags. Thus, given the maps of transponders, the robot was finally able to localize
itself with only RFID and odometry. Kleiner et al ([5]) have performed trajec-
tory correction and GraphSLAM with sparsely spread passive transponders. Other
works have exploited the active RFID tags. For example, Kantor et al (Kantor et
al. (2003)) used EKF for localization, mapping and SLAM. They exploit measured
signal strength between the transponders which is not a standardized feature in pas-
sive RFID systems. Lu proposed a demonstration of a system for passive UHF tags
that exploits the directionality of RFID readers. Beliefs of the positions of tagged
objects are formed by varying one time robot poses. Yamano et al ([6]) examinate
how Support Machine Vector could learn robot localizations. This is applied by
generating feature vectors out of the signal strength infor- mation gained from ac-
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tive RFID tags. Chae et al (Chae and Han. (2005)) computed a weighted sum of
the currently detected tags positions. Then the robot was localized at a finer scale
by monocular vision involving SIFT features. Tsukiyama et al ([7]) developped a
simple navigation mechanism on the basis of vision for free space detection. RFID
tags were considered as labels within a topological map of an indoor environment.
Recently zhou et al ([8]) proposed a vision based indoor localization method that
used modified active RFID tags. These tags were equipped with LEDs which make
the recognition much easier. Ziparo et al ([9]) used RFIDs to coordinate a team of
robots for an exploration in unstructured areas. Raoui et al ([10]) presented also
two strategies for metrical and topological navigation with tags merged on shelves
and on the ground. Concerning navigation with visual landmarks, Hayet et al ([11])
developed a method which extracts planar rectangles from edge segments through
a relaxation scheme.

3 Metrical and deterministic method for self-localization

We propose an approach for topological navigation based on sparsely distributed
RFID tags. The operator sets RFID tags (with known labels) in dedicated places so
that when the robot receives the signal from one tag, it knows that this tag is in the
reception field of the antenna. Figure 3 represents a simulated environment, with
a simulated trajectory the robot has to execute : the blue dots numbered from 1 to
42 are RFID tags the positions of which are assumed to be known at this step. The
robot starts from the position X7 ; its position after a motion between two successive
positions X; and X;, is predicted from odometry. The robot model is known so
that the odometer delivers motion measurements (u;Q) In the current robot refer-
ence frame , with u = (dx;dy;d0) and Q the covariance matrix on u. LAAS has
evaluated how a virtual robot could cope with self-localization when executing this
trajectory, using a stochastic framework that allows to fuse measurements acquired
by odometry (in order to predict the robot position from the estimated motions) with
other information coming from the reception of a RFID signal or from the detec-
tion of a visual landmark. By now, only metrical localization is evaluated, without
taking into account the world structuration in different areas. Figure 4 describes
the different steps required to cope with robot localization from the observation of
RFID tags.

We analyze these steps between the two positions 2 and 3: the true positions
are presented in (a). Two tags labelled 5 and 12 will be detected when arriving at
position 3. In (b) the estimated X7 position is presented with the elliptic uncertainty
area in which the true robot position must be with a probability 0.95: this ellipse
is computed from the covariance matrix P2° on the position vector (X;Y;0). In
(c), the robot moved from X, to X3, and predicts its new position from the odom-
etry measurements u, thanks to a function F: X3 = F(X5,u) The error P; on Xj is



Metrical mapping and self localization 2141

Figure 1: The RACKHAM demonstrator from LAAS(left); The Shopping Trolley demon-
strator from FZI (right)

Figure 2: Reception field of one antenna (left). Reception field of eight antennas monted on
a circular robot (right)
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computed using a linearization of F, using jacobians of F with respect to X and u:

P¥ = d_F Ped_Ft + d_FQd_Ft
3T dX 2dX T du” du
Figure 5 shows the predicted robot position X; for the simulated trajectory, exe-
cuted without observation. The odometry errors are cumulative, so that at the end,
the robot position prediction has a high uncertainty. This uncertainty can be main-
tained constant when observing RFID tags. In (d) the robot receives RFID signals.
If the robot is only equipped with one omnidirectional antenna, when it receives the
signal from an RFID located in a position (X;;Y;) , we can apply a constraint on its
position (X,;Y;):

X +X)*+ (Y +Y,)* <R

where R is the maximal distance between the tag and the antenna. So without con-
sidering the orientation, when the robot receives in X3, the RFID signals from tags
5 and 12, it means that its true position is located inside the two discs drawn in
figure (d). Using the classical EKF-based framework for robot localization, it is
not possible to express such a constraint: so we apply here a particle filtering ap-
proach. Hypothesis on the robot position are randomly selected from the gaussian
distribution (X3, P5) : then the likelihood of each particle is estimated with respect
to the observation constraints. In figure (e) only the particles in the two discs in-
tersection are kept, and finally in (f), the estimated position X5 is computed using
the barycenter of the acceptable particles, and the uncertainty P5 is evaluated from
the eigen vectors and eigen values of the cloud of the acceptable particles. Figure
4 shows the estimated robot positions X/ when executing all the trajectory taking
into account RFID observations. Using only an omnidirectional antenna, it is not
possible to update the robot orientation. But if the robot is equipped with several
directional antennas, other constraints can be applied on the robot position and ori-
entation from the observation of one RFID tag from one known antenna. The Rack-
ham demonstrator (figure 1(right)) is equipped with 8 directional antennas. Figure
2(left)) presents the calibrated reception fields: antennas receives signals emitted in
a 120 deg cone, from less than 4,5 meters. A tag can be received from one, two or
three antennas, depending on its position with respect to the robot in the red, blue
and green regions. When a tag located in (X;;Y;) is received by an antenna located in
(X4;Y,) with an orientation 8, with respect to the world frame (see figure 2(right)),
it gives two new constraints : the tag must be in the reception field, i.e. in the disk,
but also between two straight lines :

Similar constraints can be applied also if a tag is not received. So these con-
straints are applied in order to estimate the likelihood of a robot position estimate
from observations of tags with our RFID reader connected to eight antennas. Fig-
ure 6 shows the estimated robot positions and orientations X with the simulated
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Figure 3: Simulated trajectory
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Figure 4: Mixed approach: EKF used to fuse odometry measurements, MLE used to evalu-
ate consistent hypothesis with the RFID observations

environment and trajectory

3.1 Filtering non-observations

In the previous section, we have presented our approach to do deterministic local-
ization using the Kalman filter. However, this method doesn’t use the information
about the antennas of the robot which does not have observations. These informa-
tion can be integrated to have more precision in the localization. In order to increase
such accuracy, we apply the following algorithm on each step of the robot path :

e Computing the robot observation in the current step based on the model of
the antennas.

e Finding the particles around each predicted position with a covariance of P,
computed in the Kalman update step, that receive the same RFID tags as the
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Figure 5: Predicted positions from the robot model (odometry, EKF update of the last esti-

mated position)

Figure 6: Robot localization at different positions with the computation of standard devia-

tion for x,y, 0
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Figure 7: True error, Y coordinates
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Figure 11: Standard deviation on predicted y

observation.
e Considering only the particles that receive the same tags as observation.;
e Rejecting particles that receive other tags

We do statistical measures in order to show how the performances of localization
are improved with the non observation operation. For that, we move the robot
with different error noises. At each cycle, we compute the standard deviation of
measurements ( XxEst-xTrue) for the case of using non observations or not using non
observations. The results are presented in figure 13.

4 Stochastic localization using particle filter

The method is based on the particle filter and includes some modifications that im-
prove the localization performance. We consider then the approach based on the
modeling of physical properties of the sensor and the observation process. We ex-
plain the principal steps of the algorithm and the improvement that we do. First, we
initialize the algorithm with a uniform distribution of the positions of our environ-
ment if we don’t know the first position of the robot; or with a distribution centred
on the first position if we know it. Then at each iteration, we apply the following
steps([12]) :

e Prediction of the movement :in this step we use the displacement estimated
by the odometer and the displacement model for taking the next position in
the probability distribution of the next positions. We modify this behavior
by taking N; positions instead of 1 position. We obtain the set M; and we
associate for each particle Mk[i] the probability of F";\,—;M We obtain then
N; Nyampie particles.
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Figure 12: Standard deviation of xEst-xTrue for 10 robot cycles, the application of non
observation reduces it. red line is without non observation, blue line is with non observation

Figure 13: Evolution of the distribution of particles ( by consideration of non observations,
we keep only yellow particles)
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Figure 14: Stochastic simulation, the particles are illustrated with red points

e Insertion of random particles : We insert N, particles uniformly distributed
in the environment with an association of a low probability p,,,. This step al-
lows a quicker correction if the robot is lost which influences all the generated
particles

e Integration of the observations: We change the probabilities of N;.Nygmpre +
Naux points with the measure of the correspondences with observations.

e The resampling step This step takes in entry the precedent points with their
new probabilities and generates the final set with taking uniformly N sample
particles among them. The probabilities associated to these new particles will

1
be equal each other and equal to —

We present below the results of the simulation in which 300 samples are used and
with the probability distribution of the odometer set to be 3 and the number of
injected particles set to be 30. In figure 12, we present the aggregation of the first
20 displacements. These correspond to displacement in a rich environment with
tags.

4.1 Information gain based active localization

In order to maximize localization performances, we use an intelligent control strat-
egy named active localization. It consists of coupling control actions into the esti-
mation process. Then, an information theoretic control is used. In fact, information
measures quantify the uncertainty in a probabilistically representation estimation
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Algorithm 1 Algorithm ActiveMCL(X;_1 , u; , z; , m)
X+ 0
: form<« 1toM do
fori+ 1toldo
x"; < sampleMotionMmodel(u; ;, x;" ;)
wi’fi < measurementModel(z;, x}",m)
Xm' — X[7i—|— < X;ni, W;ni >
end for ’ 7
end for
fori+ 1toldo
xp,i = mean(x[";)
Xi—1, = mean(x;”_u)
L(i) < entropy(x; ;)-entropy(x;_1,;)
: end for
: Imax < max(L)
D XA X
: form<+ 1toM do
draw i with probability wi
add xa! to Xa,
: end for
: return Xa;
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and are used as cost functions for potential control actions. Thus, the information
metric is defined as a function of probability distribution.

where p(x) represents the estimates of the robot positions [X y], which is consid-
ered as a gaussian with a mean hat(x) and a covariance P. The information metric
is h(x) = 1log[(2me)"|P|]. The information gain is defined as the difference in the
information of our estimation before and after a particular action.

I[x,a] = h[p(x/a)] — h[p(x)]
While the vehicle moves it follows the following procedure :
e choose a trajectory that maximizes I[x,a]
e Propose several trajectories

e Estimate the observation based on the antenna reception field that will be
made along each trajectory
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Figure 15: Robot localization at different positions with the computation of standard devi-
ation for x,y,0

MCL represents the belief of x; by a set of M particles. Line (4) in our algorithm
create samples from present belief as starting point. The measurement model is
then applied as indicated in line (5) to determine the importance weight of that
particle. The implementation model is done by using the perception model of RFID
antennas. In line (3) we make an iteration over all possible actions from t to t+1. So
we have possible posterior positions x}"; and weights w/". . The initial belief bel(xo)
is obtained by randomly generating M such particles7fr0m the prior distribution
p(x0, and assigning the uniform importance function M~ 'to each particle. For each
action i, we compute the difference in the entropy between the mean of the particles
at time t and t+1. In line 12, we look for the index of the action that maximizes L(1).

In order to evaluate the method, we calculate an error value according to the
number of way points during the motion of the vehicle. That’s why we compute :
- The covariance of the particles during the motion of the robot. - The covariance
of a randomly distributed particles around each true pose. - The difference between
these two values.

5 Self localization with visual landmarks

In this section, we choose to use punctual visual landmarks to correct the posi-
tions of our robot. The use of these features improve the localization and many
researchers prefer to use them.
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Figure 16: Geometrical referential related to camera calibration

Several methods exist to represent the process of image formation. The simplest
one is the pinhole model. The pinhole camera model is based on an ideal pinhole
camera. It represents the relationship between the coordinates of a 3D point and
its projection onto the image plane. Here, the camera aperture is described as a
point. Geometric distortions or blurring of unfocussed objects are not included in
this model. Also, it does not integrate the fact that most practical cameras have only
discrete image coordinates. This system respects the Gauss conditions. To describe
this process, we just represent the relations between the space of the world and
those of the image, then express the projection of the camera space on the image
plane and apply the affine transformations which give the image coordinates. The
relations of a point M, in the space of the world ( X,Y,Z,1) which image coordinates
are (su,sv,s), are expressed as :

su ku su cy £ 000 Rii1 Rip Riz i X
= Ryt Ryp Roz ty| | Y

SV - 0 kV CV . 0 f O O .
s 0 0 1 001 o |1 Rz Rzt z
0 0 0 1 1

The parameters employed in this model are divided into two categories: extrin-
sic and intrinsic parameters. Extrinsic parameters are : F: focal distance k, and k,:
zoom factors in the image ¢, and c,: projection coordinates of optical center in the
image plan. S, ,: related to the non orthogonality of raws and columns of electronic
cells of the camera. This parameter is neglected . Intrinsic parameters : R3,3:matrix
of rotation that passes from the world of work space to world of the camera. t,,
ty, t;: components of the translation vector that passes from workspace to camera.
We use the extended Kalman filter ([13])to compute the position of the robot. The
innovation is given with : Innov = z — 2.4, With

\/Z(delta)z)

delta(2
arctan(dilizglg) -9,

Zi=h(X)=|
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and
delta(1) = u— Xy

delta(2) =v — yyen

We consider x,.5,Vven and 0, the coordinates of the robot.

[xvehyveh] - [xpredypred]

for z pred

[xvehyveh] = [xtrue))lrue]

for z
Thus : xgg, the estimated position of the robot, is computed with :

XEst = Xpred +Innov.K

K is the Kalman coefficient.

6 Mapping with RFID tags

In our approach, we do mapping separately from localization, which means that
we perform first localization, obtain the positions of our demonstrator, then we
do mapping. As described before, the conception of maps is a key in the robotic
navigation, thus it attracts a great interest of the robotic community. We start in our
application by calculating the robot positions using deterministic or probabilistic
methods as described in the section dealing with localization. Besides, we present
two methods :

6.1 Deterministic method

The robot circulates in the environment. At each time it detects a new tag, it reduces
its areas of mapping. Supposing it is firstly in the area A, it draws a zone of existence
that corresponds to the model of perception of the antennas (see figure 16), after
advancing, the new zone is the intersection of the two zones which is the part B of
the figure 16, and so on. We follow these steps until we don’t receive any more tag.
In the following, we present the algorithm which describes our method.

6.2 Probabilistic method

While the robot moves, it verifies whether it receives some tags. If not, it continues
until it receives a tag. It discretizes the zone according to the perception model and
then, for each particle our demonstrator verifies if it is received from the past zones.
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Figure 17: Movement of the robot. At each step, it reduces the zone of the estimated tags
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Figure 18: Estimated positions of the tags with blue stars ( First algorithm)
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Algorithm 2

1: for tag <— 1 to N do

2:  for robot-position <— 1 to P do

3 detected-tags = scan(environment)
4 if detected-tags # 0 then

5: memorize this zone z,opor— position
6

7

8

9

intersect with the precedent Z,opor— position—1
end if
end for
: end for

Figure 19: Simplified sensor model for one robot antenna

If not, it is discarded. We need to know the posterior p(x|z;,,) ) for each particle.
x is the predicted pose of the tag and z1:t represents the data gathered in the time
step 1:t. We use the Bayes rule which considers the assumption of independence of
consecutive given measurements. We obtain the following recursive update rule :

p(x[z1:4) = o.p(z:]x) p(x[21:0—-1)

p(z|x) specifies the likelihood of the observation z; given the pose x of the tag
relative to the robot pose.

The model of perception of the antennas consists of 2 compo- nents. Figure 19
shows the detection range for each antenna. It consists of an arc with an opening
angle of 95 degrees in the direction of the antenna. Besides, RFID tags which
are close are always detected. This is modeled by a circle around the center of
the receiver. Figure 19 also depicts the corresponding likelihood for two detection
ranges.

We apply this method by considering the posterior positions which do not re-
ceive any tag that allows to filter more particles. We evaluate our method by com-
puting both for x and y coordinates of the tag, the difference between the average
of the predicted positions, and its true position. We show in figure 21 the error on
x coordinate (blue), and on y coordinate (green). The accuracy is found to be about



Metrical mapping and self localization 2155

Algorithm 3

1: for tag <— 1 to N do
2:  for robot-position <— 1 to P do

3: repeat
4: R=Memorize the robot position
5: until received-tags = QP+ ellipse(robot-position)
6: for x; < 1 to size(P) do
8:
p(xilzie) = o.p(z|xi) p(xilz14-1)
9: if R; receives p; then
10: reject p;
11: end if
12: end for
13:  end for
14: end for

0.2 m on x axis, and 0.4 m on y axis.

7 Conclusion

In this paper, Firstly, we have presented two approaches for self localization using
deterministic and probabilistic methods in order to localize a robot in a commer-
cial center. These methods use respectively Kalman and particle filters.By now the
Monte Carlo localization has been implemented. To improve the performances, we
have discarded the predicted positions that receive tags not belonging to the obser-
vation. We have used a simplified model to heuristically estimate the entropy of the
map which maximizes the accuracy of localization. Besides, we have changed our
landmarks from RFIDs to visual features. The pinhole camera model is suitable to
perceive these landmarks. Secondly, we have developed two methods which gen-
erate maps of RFID tags. Our sensor model allows us to compute the likelihood of
tag detection given the relative pose of trajectory.
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