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Abstract

This article develops two descriptors global and local for colored images.
The first allows to do image retrieval while the second is applied to object
recognition. First we combine color and texture attributes in a unique frame-
work. Our approach is based on the physical properties of light bouncing from
a scene. Furthermore, it is claimed that the distribution of Gabor filter outputs
can also be provided by a Rayleigh. Filter.Thus, we deduce the Rayleigh-
Gaussian framework from the Gabor-Gaussian one. Then we compute a de-
scriptor based on statistical measures performed on Rayleigh-Gaussian fea-
tures. Secondly, we propose a new detection function for interest points and a
new characterization of such points. The detection function extends the Har-
ris Laplace method. Our function extracts features invariant to rotation and
scale from color images. We use the second moment as a basis of corner de-
cision. Around each feature point we compute a texture descriptor using the
Gabor filter. As an evaluation of this new class of interest points, we have
implemented a recognition method of 3D objects by indexing a data base on
object views; this method is similar to the Lowe method, except that that SIFT
features and descriptors are replaced by the ones proposed in our approach.
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This recognition method exploits a KNN classifier to match interest points
from their descriptors, and then a Hough transform to cluster reliable point
matches, voting for a consistent similarity transform.

Keywords: Content based retrieval systems, Gaussian color model, Feature
points, color texture framework, Rayleigh distribution, Hough transform, Object
recognition

1 INTRODUCTION
This paper presents two works on image description and retrieval. Firstly we present
an new technique that computes a global descriptor of color texture images. Sec-
ondly we describe a method which computes a detector and a descriptors from col-
ored images invariant to scale and rotation. In fact, The acquisition and use of
images know an explosif growth. The retrieval systems called Picture archiving and
communication systems(PACS) used limited text keywords and saved them as im-
age headers. However, these keywords do not reflect the richness of features that
contain the image itself. The Content Based Image Retrieval has received signif-
icant attention in the litterature. Their apparition is considered as a turning point
because they allows an intelligent management of images [1]. Using this approach,
users can provide an example image or image features ( color, texture, shape ...) to
find similar images.

Swain and Ballard were among the pioneers of this approach [2]. The hypoth-
esis under the CBIR approach is that the statistical measures of similarity among
representations of image attributes do correlate with subjective visual similarity [3].

In the first part of our paper, we present color texture attributes describing an
image which used to feed our method of content based image retrieval. Our goal
is to develop an effective mechanism that extracts global attributes which describes
color and texture attributes. To do this, we propose a new image description method
exploiting the results of the theory of color texture measurement which is developed
by Hoang et al [4] in order to probe an observed scene. We will modify this method
so as to be invariant to rotation and scale by using a class of Gabor wavelets. In
other hand, it is known that the dimensionality of Gabor filter’s outputs is high.
Bhagavathy et al demonstrated that such outputs have a Rayleigh tendency [5]. We
will use this result to compute a more compact color texture feature.

In our second work, we present a novel approach about the extraction of fea-
ture points from images.To extract these visual features, a significant number of
detection and description methods have been developed in recent years : SIFT (
Scale Invariant Feature Transform) [6] which has been the source of inspirations
for many derivations. SURF(Speeded Up Robust Features)[7] and CenSure (Center
Surround Extremas) both used for their speed. SIFT is invariant to image scal-
ing translation, to rotation and partially to illumination changes and affine or 3D
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projections. Features are detected with an approach that identifies stable points in
scale space. They are created by representing the blurred image in multiple orien-
tation planes and multiple scales. Whereas SURF detector computes the features
and their descriptor. It uses the DoG operator as a Hessian matrix to improve time
performance. It describes using a distribution of Haar wavelets responses in neigh-
borhood of the interest points as well as the use of integral images. The extraction
of invariant features can be performed using either conditions intrinsic to the objects
which are included in the image or on the intrinsic properties of the objects. How-
ever, the second approach is shown to be less complex [4]. Formally, two objects
or two appearances of objects are equivalent under a group of transformations T if
they belong to the same equivalence class [4].

Event though the Harris multiscale technique represents one of the state-of-the-
art approaches to object detection/recognition, it has some deficiencies when ap-
plied to color textured images. Thus, we compute a detector that extracts corners
from images with the well known Harris approach. We make this detector suitable
to colored images by representing the image in the Gaussian color model devel-
opped by Koendering. To insure invariance to scale, we compute a characteristic
vector of a local structure around each feature point.

Object recognition has been developped quickly in recent years because of ad-
vances in machine learning, modern approaches feature extraction techniques and
greater availability of image databases. We apply our new features to recognize
small learned objects in cluttered scenes. Up to now, the methods used are inter-
ested to objects that takes a large areas in a scene. Many recent approaches which
make use of an object in real world scale such as a prior for the scale in the im-
age. Hoeien et al [8] infers with an image jointly 3D object locations and scene
information ( 3D surface, orientation). Moreover Gould et al [9] et Quiglez et al
used object scale in recognition. They acquire high accuracy depth maps with laser
scanners placed on a robot. Then object detector utilizes both surface variations, 3D
shape and appearance to find objects. The paper is organised as follows : In section
I, we present our global descriptor where the color-texture measurement theory is
explained. Then, we propose our image descriptor,as well as we describe how this
method has been implemented, and we give some preliminary results. In section
II, we present our local feature by developing the detection scheme and then we
present our descriptor. In section III, we give an evaluation of our descriptor and we
show results of objects recognition. In Section IV we give a summary of the paper
and propose some future works.



2112 Y. Raoui et al

2 GLOBAL DESCRIPTOR

2.1 Color and texture measurement
We study the physical [10] aspect of color texture attributes. It is known in physical
based approach that the observation process can be viewed as the integration of
the energy density over spatio-spectral dimensions[11]. We aim to develop a color
texture frame work to be used in CBIR tasks. It is well known that the scale space
theory developed by Taizo Iijmia [12] is suggesting that the probes should have a
Gaussian shape in order to avoid extra details when observed at a coarser scale [13].
The Gaussian scale space is in fact the prototype of linear scale spaces which has
connection to the linear diffusion process.

2.1.1 Color measurement

Color is one perceptual result of light in the visible range 400-700 (nm) penetrating
into the retina. In the last years, the analysis of color was based on the colometry
where the spectral content of the tri-chromatic stimulus are matched by humans,
driving in the well known XYZ color matching function [14]. The color can more-
over be measured through the integration of the electromagnetic energy of the image
over a spectral bandwidth with the use of Gaussian color model. The Gaussian color
model is defined as the Taylor development of the energy distribution to the second
order derivatives [14]. One of the advantages of this method is that it reflects human
vision process. Let’s have the development to the second order of the filtered energy
distribution : C(λ,σλ)

C(λ,σλ) =C(λ0,σλ)+λCλ(λ0,σλ)+
1
2

λ
2Cλλ(λ0,σλ) (1)

+o(λ)

C(λ0,σλ) =
∫

E(λ)G(λ,λ0,σλ)dλ (2)

Cλ(λ0,σλ) =
∫

E(λ)Gλ(λ,λ0,σλ)dλ

(3)

Cλλ(λ0,σλ) =
∫

E(λ)Gλλ(λ,λ0,σλ)dλ

(4)
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Figure 1: The 3D probe function
Where : Gλ(.) and Gλλ(.) denote derivatives of the Gaussian with respect to λ.

It is shown that C(λ,σλ) represents a theoretical measurement of the color in an
image [15].

2.1.2 Texture measurement

Texture is a key component of visual perception. Like color or shape, texture is an
essential feature to consider querying. Many systems based on color or texture can
be found. Among the characteristics of texture, some of the most commonly used
is second order statistic that computes certain matrix values on which we can do
several specific calculations. Since Daugman [16] [17] has generalized the Gabor
function proposed by [18] to model the receptive fields of the selective single cells,
they have been widely used within the image processing community. Generally,
Gabor filter can be viewed as a modulation of a Gaussian envelope and sinusoidal
plane of a particular frequency and orientation [19].

2.2 Color texture framework
The observation process is viewed as a convolution of the energy as it bounces
from a scene with the Gaussian function in the spatio-spectral space. Let’s have
CT (x,y,λ) the function describing our observation:
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CT (x,y,λ) =
∫ ∫ ∫

E(x,y,λ)G(x,y,λ,σs,σλ,λ0)dλ (5)

Besides, since the texture is characterized with the local spatial frequency, we
choose to work in the frequency spectral space with coordinates (u,v,λ):

CT (u,v) =
∫

E(u,v,λ)G(u−u0,v− v0,λ−λ0,σs,σλ)dλ (6)

= G(u−u0,v− v0,σs)
∫

E(u,v,λ)G(λ−λ0,σλ)dλ

By applying the equations above we obtain:

CTn(u,v,λ) = G(u−u0,v− v0,σs) (7)

∗
∫

E(u,v,λ)Gn(λ−λ0,σλ)dλ

The multiplication in the frequency domain is equivalent to the convolution in
the spatial domain. Thus,

CTn(x,y) = Gb(x,y)∗
∫

E(x,y,λ)Gn(λ−λ0,σλ)dλ) (8)

where

Gb(x,y) =
1

2πσβ
e−pi (x−x0)

2+(y−y0)
2

σs ei[ϒ0x+v0y]
(9)

(x0,y0)is the center of the receptive field in the spatial domain. (ϒ0,v0)optimal spatial
frequency of the filter in the frequency domain. σs is the standard deviation of the
elliptical Gaussian along x and y

2.3 Color texture descriptor
In the current study, the color texture descriptor is based on the unified frame work
CTn(u,v) developed in the last subsection. We will use a class of Gabor wavelets
instead of Gabor function to insure rotation and scale invariance. The idea of our
present contribution is to compute a descriptor based on spatio-spectral properties
of the image electro-magnetic energy. In order to increase the efficiency of the
Gabor filter, as suggested in [1] we consider a class of Gabor wavelets.

Tp,q(x,y) = a−pt(x′,y′),a > 1, p,q ∈ Z (10)

where

x′ = a−p(xcos(θ)+ ysin(θ)) (11)
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y′ = a−p(−xsin(θ)+ ycos(θ)) (12)

where
θ =

qπ

K

K is the total number of orientations

CTnpq(x,y) = Tpq(x,y)∗
∫

E(x,y,λ)Gn(λ−λ0,σλ)dλ) (13)

CTnpq(x,y) = |Anpq(x,y)+ jBnpq(x,y)| (14)

However, the efficiency of this color-texture framework is adversely affected
by the high dimensionality and computational complexity of the Gabor filter. This
problem was treated in [5].We propose then the following approach to overcome it :
In fact, Dunn and Higgin demonstrated that the 1-dimensional Gabor filter outputs
have a Rice distribution [20]. This property was extended by Bhagavathy, et al to
the 2 dimensional case [21]. Thus, we have

Anpq(x,y) = Rnpq(x,y)cos(θnpq(x,y)) (15)

where Rpqn(x,y) has the following PDF,

fR(r) =
r

σ2 exp(−
r2 +A2

0
2∗σ2 )I0(

A0r
σ2 ) (16)

and I0(
A0r
σ2 ) represents the zero-order modified Bessel function of the first order.

Rpqn(x,y)is a function containing spatio-spectral informations of the image. There-
fore, we consider Rpqn(x,y) as a local feature of color texture attributes within an
image. p,q are respectively the scale, the orientation relative to texture. And n
is the color channel. Besides, it is shown that the Rice PDF can vary from the
Rayleigh PDF for small A0 to approximate Gaussian PDF to large A0. The first case
is the most convenient since it concerns a wide range of textures. Bhagavathy, et al
demonstrate that it is possible to compute the Rayleigh descriptor from the Gabor
one by using the following equation [5]:

Γ
2
mnq =

1
2
(µ2

pqn +σ
2
pqn) (17)

µpqn,σpqn are respectively the mean and standard deviation corresponding to the
channel n. The dimensionality of Rayleigh filter is almost 50% of Gabor filter with
only a trade off of less than 3% on the error rate.

Principle:



2116 Y. Raoui et al

1. Compute descriptors for
the color textured image
based on the mean and
the standard deviation for s
scales, k orientations and 3
channels.

2. Compute the Rayleigh fea-
ture using the Gabor one
for each channel. The di-
mentionality of the result-
ing vector is 3*( s*k+2)

3. Concatenating the 3 de-
scriptors for each channel

Thus for the each spectral channel k = 0,1,2, we obtain three descriptor vectors:

Dµσ0 = [µ000,σ000, ...,µs−1,k−1,0,σs−1,k−1,0,µI0,σI0] (18)

Dµσ1 = [µ001,σ001, ...,µs−1,k−1,1,σs−1,k−1,1,µI1,σI1] (19)

Dµσ2 = [µ002,σ002, ...,µs−1,k−1,2,σs−1,k−1,2,µI2,σI2] (20)

We construct the final descriptor by concatenating the three channel descriptors:

Dµσ = (Dξσ0,Dξσ1,Dξσ2) (21)

From theDµσ, the Rayleigh parameter of the output distribution is given by :

Γ
2
mnq =

1
2
(µ2

pqn +σ
2
pqn) (22)
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Figure 2: Color Texture description scheme

2.4 Implementation and experiments
2.4.1 Implementation

In order to evaluate the proposed descriptor of image retrieval , we use an RGB
camera. As mentioned by Geusbroek and al., the best linear transform from RGB
to the Gaussian color model is given by:

G = MCT (16)

Where

Mg =

0.06 0.63 0.31
0.19 0.18 −0.37
0.22 −0.44 0.06

 (23)

C=( R G B)
We use also Gabor wavelets which configuration is proposed in [22].

scales 4, 3.5, 2.95, 2.35, 1.75
central frequencies 0.05, 0.08, 0.14, 0.22, 0.33

orientations −π/4,-π/2,π/4,π/2
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2.4.2 Experiments

Experiments were performed on a Pentium 4 with 4 GB of main memory and 40
GB of storage. The programs have been implemented in MATLAB. We evaluate our
method using 144 images. The images are captured from different view points and
under different scales and orientations. They represent moreover different themes
such as landscapes, animals, monuments and people. Each image is represented by
a vector of 66 elements (5 scales, 4 orientations and 3 channels). The following
figure shows an example of simulations.

We take a sample of 10 images of a particular scene. Then we apply our global
descriptor on each of these images. We do matching by comparing these descriptors
and the query image descriptor. We compute for that the coefficient of pairwise
linear correlation between each pair of the query vector and the vectors of images.
Then best match is obtained by looking for the maximum correlation. The figure 3
shows the average of correct matches according to the number of retrieved images.
We observe that the average is growing with the number of images.

Figure 4: Results for retrieving images using our global feature

3 LOCAL DESCRIPTOR
Our goal has been to develop both detector and descriptor that has a low dimen-
sionality without scarifying its performance. We aimed to insure the distinctiveness
of our descriptor while reducing its dimension. Many descriptors has been devel-
oped in literature in order to resolve problems like robot navigation and grasping.
We get feel for what are the aspects contributing to the performances when do-
ing experiments on object recognition.We show that our detector descriptor is more
distinctive and equally repeatable. Moreover, the invariance of features relied on
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Figure 3: Retrieved images, from the most similar to the least similar
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geometric and photometric deformations is of high importance for our application.
We have been interested to the scale and image rotation invariance. In fact, these
elements offer a compromise between feature complexity and robustness regarding
to deformations. That’s why we have considered second order effects such as skew,
anisotropic scaling and perspective effects. Concerning the photometric deforma-
tion, we have assumed a Gaussian color model which represents the 3 components
of the luminance in the Gaussian color model.

3.1 Detector computation
We use the Harris detector[23] because of its suitability in time performances. It
is based on the second moment matrix also called the auto correlation matrix. It
is convenient for the computation of the local structure into images. And finally,
should be adapted to scale in order to make it independent on the resolution of the
image. The second moment matrix adapted to the scale is defined as :

M(x,y,σI,σD) = σDg(σI)

(
Lxx Lxy
Lxy Lyy

)
(24)

The gaussian kernel has to be discretized and cropped even if it is optimal for scale
space analysis.

The local derivatives are computed by a gaussian kernel determined by the scale
σD. The derivatives are then averaged in the neighborhood of the point by smooth-
ing with a gaussian of size σI .

So the eigen values represent two principal changes in the neighborhood of the
point. This allows the extraction of points for which both curvatures are significant
so that the signal be important in the orthogonal directions.( junctions corners ..).
These points are stable regarding to lightning conditions.

cornerness = det((M(x,σi,σD)))−α.trace2(M(x,σi,σD)) (25)

The Harris detector applies only to gray scale images. Montesinos et al generalized
it to color images[24]. In our case, we propose to use Gaussian color model to
integrate color in the Harris detector. This is done by diagonalysing the explicit
matrix of Koendering kernel( mentioned above) given in [25] with :

Mg =

0.06 0.63 0.31
0.19 0.18 −0.37
0.22 −0.44 0.06


(26)

And ponderate the three components of the Gaussian derivatives by α,βandγ
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Algorithm 1
1: in← Readimage

2: R← in(1)
3: B← in(2)
4: G← in(3)

5: M←

0.06 0.63 0.31
0.19 0.18 −0.37
0.22 −0.44 0.06


6: Diagonalize M→ (α,β,γ)
7: S←α.R+β.G+ γ.B
8: Lxx←Gxx.S
9: Lxy←Gxy.S

10: Lyy←Gyy.S

11: M(x,y,σI,σD)←σDg(σI)

(
Lxx Lxy
Lxy Lyy

)
Algorithm 2

1: for i← Feature Point-2 to Feature Point+2 do
2: box← Create a box around a point i
3: result← box * Gaussians(scales)
4: Compute norm(result)
5: V← 4 highest values
6: Add V to the Feature Point
7: end for

3.1.1 Scale computation

We want to select a characteristically scale of a local structure for which a func-
tion attains an extremum over scales. The selected scale is characterized because
it measures the scale at which there is maximum similarity between the feature de-
tection operator and the local image structure. We use the following algorithm for
computing the characteristically scales :

3.1.2 Orientation assignment

In order to be invariant to rotations, we compute orientation for interest points.
That’s why we use the same method as in SIFT. In fact it has good performances
comparing to other descriptors because it mixes localized information and the dis-
tribution of gradient related features. So, for each scale the image is processed to
extract image orientations. We compute pixel differences :

Ri j = a tan(Ei j−Ei+1, j,Ei, j+1−Ei j) (27)
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Figure 5: Features extracted both with SIFT detector(gray scale image) and by our detector

Where E is the pixel value. We compute the orientation for the feature point and all
points around it ( 4 points) and we concatenate these orientations in the same array.

x y σ r t
space scale orientation texture

Figure 6: Structure of our descriptor, 2 bin for space, 21 for scale, 5 for orientation, 9 for
texture.

3.2 Descriptor computation

We compute a texture invariant by using Gabor wavelets at different orientations and
scales [26]. We use 9 kernels and we do convolution with small windows around
each feature point[27][28].

4 RECOGNITION BY INDEXING

We present a standard evaluation for our detection and description and we discuss
results obtained in a real life object recognition.

• Standard evaluation :

Our descriptor is evaluated using the image sequences provided in Ponce Group
Dataset and from the Amsterdam library of object images. We use images of tex-
tured and structured scenes.
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4.1 Repeatability

This score shows the detected interest points which are found in both images rel-
ative to the lowest total number of interest points. However, only the part of the
image that is visible in both images is taken into account. Our detector is compared
to the DoG detector by Lowe and the Harris and Hessian Laplace detector proposed
by Mikolajzyk. We compute the ratio between the number of point to point cor-
respondances and the minimum number of points detected in the image. Then we
take into account only points that are in the images. The algorithm that computes
this ratio is presented in [23].

1. The error in relative point location is less than 1.5 pixel: ||xa−Hxb|| < 1.5,
where H is the matrix of homography.

2. The error in the image surface covered by point neighborhoods is S ¡0.4. In
the case of scale invariant points the surface error is:

es = |1− s2 min(σ2
a,σ

2
b)

max(σ2
a,σ

2
b)
| (28)

where σaandσb are the selected point scales and s is the actual scale factor recovered
from the homography between the images (s > 1).
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Figure 7: First Figure : Repeatability of Fast Hessian, DoG, Harris-Laplace, Hessian-
Laplace interest points detectors with respect to scale, Second Figure : Repeatabilty of
our detector descriptor with respect to scale

We estimate the stability of our descriptor by subjecting our images to affine
projections, contrast and brightness changes. We can estimate the location of each
key detected in the first image by predicting for knowledge of transform parameters
in the transformed image. The following table shows the overall stability of the
keys to image transformations. Each line of the table shows a particular image
transformation. The column gives the percent of descriptors that have a matching
descriptor in the transformed image.

Figure 8: The second image was generated by changing the luminance and the contrast and
rotating the first image.
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Image transformations Match%
Increase constrast by 2 95.5%

Decrease luminance by 2 97%
Rotate luminance by 2 94.5%

scale by 0.7 97.25%

Figure 9: Image transformation are applied to a sample of four images. This table gives
percent of keys that are found at matching location scale and orientations by applying KNN
method

4.1.1 Object Recognition

In order to evaluate how discriminant and invariant are our interest points, we use
them in order to learn object models from a set of images, in which these objects
are presented to the system, on a uniform background. Then to recognize objects
amongst the learnt ones from other scenes with possible occlusions. The learning
step allows to build a data base, with associations between objects, views and set of
interest points:

(ob jecti,viewi j, pointi jk) (29)

We use 2 steps like Lowe’s approach [6] in the matching of an image against a
database of features. First, we associate each feature to its nearest neighbor by using
the closest Euclidean distance in the attribute space.Then, we use the Generalized
Hough Transform to predict model orientation and scale from match hypotheses.
So we look for all object poses that correspond to a single feature. When cluster
of features vote for the same object pose, the probability for having done a correct
interpretation is much higher. In the following, we present the algorithm of the
generalized hough transform.

• Hough transform

Every point is associated with its attribute vector (with 27 floating values).
Some close points in the attribute space, could belong to different views of
different objects. Here in this preliminary version of our recognition system,
we do not cluster these points. The generalized Hough Transform can be used
to detect arbitrary shapes. It requires the complete specification of the exact
shape of the target object.
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Figure 10: Generalized Hough Transform, special case: fixed orientation and size.

• Preprocessing step

1. Pick a reference point (e.g., (xc, yc))

2. Draw a line from the reference point to the boundary.

3. Compute φ (i.e., perpendicular to gradient’s direction).

4. Store the reference point (xc, yc) as a function of φ (i.e., build the R-
table)

φ1 : (r1
1,α

1
1),(r

1
2,α

1
2), .

φ2 : (r2
1,α

2
1),(r

2
2,α

2
2), .

φn : (rn
1,α

n
1),(r

n
2,α

n
2), .

- The R-table allows us to use the contour edge points and gradient angle
to recompute the location of the reference point.
Before integrating information in the new image, we should make a ge-
ometrical verification with the formula of the similarity transform.(

u
v

)
=

(
scos(θ) −ssin(θ)
ssin(θ) scos(θ)

)
+

(
tx
ty

)
(30)

We note that this equation Ax=b shows a single match between the
model and the test image. In order to provide a solution, 3 matches
are required. The least square solution can be determined by solving the
equation (31) using the pseudo-inverse solution:

x = [AT A]−1AT b (31)
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e =
√

2∗ ||Ax−b|| (32)

If it matches an existing model view, there are two cases : if e>T a new
model view is formed from this training image. Else, the new training
image is combined with the existing model view. In such case, the sim-
ilarity transform solution is used to transform the new training image
into the coordinates of the model view.

5 EXPERIMENTAL RESULTS

5.1 Setting

The recognition method presented above was tested on a dataset that contains
160 training and 51 test images against a uniform background.The test scenes
contain between zero and five objects from the learning set, for a total of 79
occurrences. The viewpoint changed significantly between pictures contain-
ing a same object.

5.2 Results

The following table summarizes for each object, the obtained data for training
and model.

Apple Teddy Box shoes Car
Learning

Images 29 20 16 16 28
Features 100 100 100 100 100

Recognition
Images 5 7 5 4 6

Features 100 100 100 100 100

Figure 11: Results of model constructing from Ponce Group Dataset

In order to recognize objects in a cluttered scene, we proceed as follows :
We extract features from the training images in the database. These feature
points are matched to the cluttered scene. They are shown on the figures in
11 as red particles on each detected object. We set a threshold at 100 features
to improve the efficiency of the extraction.
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Object (A)
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Object (B)
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Object (C)

Object (D)
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!!
Object (E)

Object (F)
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Object (G)

Object (H)
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Figure 12: Recognition of objects from A to H learned by our method Objects are
captured by our camera in LAAS. Others are from Ponce Group Dataset
and from the Amsterdam library of object images.
Recognized objects are identified with red points
on the objects and with a blue circle on it .

6 CONCLUSION

In this paper, we have presented a new color texture descriptor. We have also
developed color-texture framework which constructs feature with reasonable
dimensionality. This descriptor might be used in many Content-Based Image
Retrieval systems to improve their performances. Then, we have presented
a performing interest point detection-description scheme which allows to do
object recognition for color textured images. Future work will aim at opti-
mizing the code and applying it to robotic navigation.
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