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Abstract— This paper describes several methods proposed
for RFID-based self-localization for a Trolley Robot executing
motions and interacting with a User in a store: such a robot
must know precisely its position so that it can guide the User
until shelves where Products are put on display. The robot
position is expressed as a vector (area, x, y, θ), so that the
localization is both topological (to determine when the robot
goes from one area to another one) and metrical (to know
where is the robot with respect to an area reference frame). It
is proposed two different strategies based on RFID tags for the
topological and metrical localization, either with tags merged
in the ground or with tags set on the shelves. Experiments or
simulations are presented, and a final discussion stresses the
pros and cons of every solution.

Index Terms— self-localization, topological map, RFID tags,
landmarks

I. INTRODUCTION

New challenges for roboticists and new markets for robot
makers, come from advanced services proposed by robots to
humans in public areas. Many on-going projects study Guide
Robots for museum, Person Movers in pedestrian streets,
Assistant Robots for elder and disabled people at home
or in hospitals... [12], [10] This work aims at developping
Advanced Behaviours for a Trolley robot that must assist
a User, when doing shopping in a commercial center: our
current demonstrator is presented on figure 1 on the left,
while a guide robot developped at LAAS is shown on the
right.

The Trolley is endowed with several sensors in order to
detect, track and identify its User (vision, Radio Frequency
Identification i.e. RFID, audio), to interact with him (haptic,
stereo, audio), to navigate safely in the store detecting
and avoiding obstacles (Laser Range Finder, belt of micro-
cameras) and finally, to locate itself (RFID, vision). Several
User-Trolley interaction modes have been defined in [7]:
• In the Steering and Following Modes, the User knows

the store and does not need to be guided: in the Steering
mode, the Trolley could be used as a manual one,
but with an active control by the User thanks to an
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Fig. 1. The Shopping Trolley demonstrator from FZI (left); the RACKHAM
demonstrator from LAAS (right).

haptic handle; in the Following Mode, the User asks the
Trolley to follow him, using visual servoing to control
robot motions without contact.

• On the contrary, in the Guiding and Autonomous
Modes, the Trolley has to plan and execute trajectories
in the store. In the Guiding mode, the User enters a list
of Products to be purchased; the Trolley guides the User
along an optimal trajectory in the store, managing the
distance with the User. In the Autonomous Mode, the
User can order the Trolley to go autonomously until a
meeting point.

This paper focuses only on the self-localization function,
required mainly in the Guiding or Autonomous modes when
the robot navigates towards a given objective (in fact the
exact robot position will be tracked all the time even when
the user is pushing the trolley, because the mode can sud-
denly be changed). The Trolley must know precisely its
position and orientation, so that it can reach the objective
with a good accuracy, i.e. at maximum, 25cm. from the goal,
typically the shelf where the next product to be purchased is



Fig. 2. The environment representations: (left) the map, (middle) the place structuration, (right) the topological map.

put on display. The robot position is expressed as a vector
(area, x, y, θ), so that the localization is both topological
(to determine when the robot goes from one area to another
one) and metrical (to know where is the robot with respect
to an area reference frame). Two RFID-based solutions are
developped, with RFID tags either merged in the ground or
set in the environment, e.g. on panels associated to every
corridor between shelves, or on price labels. It is supposed
here that the position of every RFID tag has been learnt off
line.

So at first, in the section II, an overview of the navigation
strategy is presented, as well as some works on RFID-
based localization. Then the section III describes how the
topological localization is determined from the detection of
RFID barriers merged in the ground, while the section IV
presents how RFID tags are used to cope both with topolog-
ical and metrical localization. A discussion on the pros and
cons of these two approaches is proposed in the section V
before concluding and describing some future works in the
section VI.

II. THE NAVIGATION STRATEGY

The shopping application has been studied in some
projects [1] [9]: let us stress on the ShopBot project [4], very
similar to our work, but where classical probabilistic methods
are proposed to cope with self-localization using mainly
vision. Our Trolley will use several modalities in order to
locate itself both in a topological map of the environment
(In which area am I moving?) and in the metrical map of
this area (Where am I with respect to Products put on display
in this area?).

A. Environment representations

The strategy selected for the navigation of the Trolley in
the store, leads us to select a specific world representation
with two main layers:
• The Topological world model describes the organiza-

tion of the store in areas (alleys, corridors), and their
connections.

• The Semantical world model (here the Product map)
allows to transform a task (e.g. Go to Apples) in a
trajectory.

Figure 2 presents the topological map extracted from a store
structuration in areas. It was supposed that these Topological

and Product maps are provided by the store manager. The
robot localization is expressed first in the Topological map,
by an area K e.g. the robot is in the corridor K. Then,
the metrical robot position (X,Y, θ) is relative to this area.
Finally, this global position (K,X, Y, θ) corresponds to a
Product family (Apples).

The topological position is obtained from RFID tags: two
approaches are proposed. LAAS is evaluating an approach
based on sparsely distributed RFID tags, while FZI has
implemented a more practical and robust (but more inva-
sive) strategy based on RFID-Barriers with tags merged in
the ground. The metrical position in the area is computed
either from odometry (FZI) or from the recognition and the
localization of visual landmarks added on purpose on the
shelves (LAAS). Basically the robot knows it is located in
front of a Product, thanks to this localization.

B. Related works

RFID technology is very attractive when tackling robotics
problems: object recognition, topological localization, person
tracking ... many problems can be made simpler assuming
that RFID transponders are integrated on objects or in the
environment. So many researchers tried to take advantage
of this technology in robotics using either active RFID tags
(long range detection) or passive ones (short range).

RFID-lines have been proposed as optical lines or electric
wires integrated in the ground [2] the robot could easily
follow; it has been generalized with RFID-carpets on which
the robot is always located. Several authors have studied
how to use the classical probabilitic framework for self-
localization [11]; EKF-based, Markovian or Monte-Carlo
methods have been proposed to update the robot position
from observations of RFID tags disseminated in the envi-
ronment [16] [5] [14] [15] [8]. It is widely assumed that
RFID-based self-localization is too unaccurate, but it has
been shown with new methods based on particle filtering [13]
that an accuracy of less than 0.3m. is possible using only
RFID-tags.

In the first approach based on passive RFID tags merged in
the ground, boundaries between topological areas are marked
by RFID-barriers, so that the robot detects when moving
from one area to another one. In the second approach based
on passive RFID tags set on shelves, RFID observations
will be fused with visual ones using the same EKF-based



Fig. 3. The RFID barrier.

framework.

III. RFID-BARRIERS FOR THE TOPOLOGICAL
LOCALIZATION.

At first, it has been proposed in [3], to use ground-mounted
RFID barriers as artificial landmarks: figure 3 shows a barrier
made of several RFID transponders (small white rectangles)
that are glued beneath a piece of PVC flooring. These special
RFID barriers are placed on the place boundaries, in order
to divide the environment into several areas, e.g. across
corridors like on figure 4. A RFID reader is placed inside
the robot (white box), so the robot is able to detect a barrier
by moving over it.

The robot knows all IDs of the tags contained in a barrier.
By driving over a barrier the robot recognizes that it just
entered a new area. By doubling the tags, as depicted in
figures 3 and 4, it even knows in which direction it has driven
past the barrier. To identify a proper height for assembling
the RFID reader on the robot, the readers coupling area was
measured with the transponder parallel to the reader; figure 5
shows the balloon like shape of the main area and the circular
shape of the side area. The distance with the largest diameter
is 2cm where both of the areas meet. Here the coupling area,
consisting of a combination of the main and a side area, has
approx. 35cm in diameter.

The larger the coupling area in diameter the faster the
robot can move past the barrier without missing it. Addi-
tionally using two tags in the barrier, the reading operation
is made more robust; figure 6 shows the reading performance
of a double RFID tag depending on the velocity of the
reader. Up to a velocity of 2m/s at least one of the two tags
of a double tag could be detected in all tests; the reading
performance with a single tag is significantly inferior.

Figure 7(left) presents the sketch of the RFID-barrier
detection: the topological position area is changed on a
deterministic way by now, as soon as the robot goes across
a barrier. Figure 7(right) shows a mesh of relative positions
of product locations inside a topological area. The relative
positions are stored in the Product Map, with respect to a
virtual origin of the area.

Finally this method has been validated by a number of
experiments. Figure 8 presents the trajectory of a robot exe-
cuting a planned loop trajectory in an environment structured

Fig. 4. Environment structuration from RFID barriers.

Fig. 5. The Coupling area in 3D view.

in 4 areas. The robot starts from the X position in the bottom
left area: it must return on this place, after reaching the
two X positions in the top right and bottom right places.
The executed trajectory is the red curve; the robot detects
successively the four traversed RFID-barriers.

IV. RFID-BASED AND VISUAL-BASED METRICAL
LOCALIZATION

LAAS proposed another approach on topological localiza-
tion, based on sparsely distributed RFID tags. The operator
sets RFID tags (with known labels) in dedicated places
so that when the robot receives the signal from one tag,

Fig. 6. Reading performance with one or two tags.



Fig. 7. RFID-barrier detection and relative positions of Products with
respect to a local corridor frame.

Fig. 8. A trajectory between 4 topological areas.

it knows that this tag is in the reception field of the
antenna. Figure 9 represents a simulated environment, with
a simulated trajectory the robot has to execute : the blue
dots numbered from 1 to 42 are RFID tags the positions of
which are assumed to be known at this step. The robot starts
from the position X1; its position after a motion between
two successive positions Xi and Xi+1 is predicted from
odometry. The robot model is known so that the odometer
delivers motion measurements (u,Q) in the current robot
reference frame , with u = (dx, dy, dθ) and Q the covariance
matrix on u.

LAAS has evaluated how a virtual robot could cope
with self-localization when executing this trajectory, using
a stochatic framework that allows to fuse measurements
acquired by odometry (in order to predict the robot position
from the estimated motions) with other information coming
from the reception of a RFID signal or from the detection
of a visual landmark. By now, only metrical localization is
evaluated, without taking into account the world structuration
in different areas.

Figure 10 describes the different steps required to cope
with robot localization from the observation of RFID tags.
We analyze these steps between the two positions 2 and 3:
the true positions are presented in (a). Two tags labelled

5 and 12 will be detected when arriving at position 3. In
(b) the estimated X2

e position is presented with the elliptic
uncertainty area in which the true robot position must be
with a probability 0.95: this ellipse is computed from the
covariance matrix P2

e on the position vector (X,Y, θ) . In
(c), the robot moved from X2 to X3, and predicts its new
position from the odometry measurements u, thanks to a
function F : X3

∗ = F (X2
e, u).

The error P3
∗ on X3

∗ is computed using a linearization
of F, using jacobians of F with respect to X and u:

P3
∗ =

δF

δX
P2

e δF

δX

t

+
δF

δu
Q
δF

δu

t

Figure 11 shows the predicted robot position Xi
∗ for

the simulated trajectory, executed without observation. The
odometry errors are cumulative, so that at the end, the robot
position prediction has a huge uncertainty.

This uncertainty can be maintained constant when observ-
ing RFID tags. In (d) the robot receives RFID signals. If the
robot is only equipped with one omnidirectional antenna,
when it receives the signal from an RFID located in a
position (Xt, Yt) , we can apply a constraint on its position
(Xr, Yr):

(Xt −Xr)2 + (Yt − Yr)2 < R2

, where R is the maximal distance between the tag and the
antenna.

So without considering the orientation, when the robot
receives in X3, the RFID signals from tags 5 and 12, it means
that its true position is located inside the two discs drawn
in figure (d). Using the classical EKF-based framework
for robot localization, it is not possible to express such a
constraint: so we apply here a particle filtering approach.
Hypothesis on the robot position are randomly selected from
the gaussian distribution (X3

∗, P3
∗) : then the likelihood of

each particle is estimated with respect to the observation
constraints. In figure (e) only the particles in the two discs
intersection are kept, and finally in (f), the estimated position
X3

e is computed using the barycenter of the acceptable
particles, and the uncertainty P3

e is evaluated from the eigen
vectors and eigen values of the cloud of the acceptable
particles. Figure 12 shows the estimated robot positions Xi

e

when executing all the trajectory taking into account RFID
observations.

Using only an omnidirectional antenna, it is not possible to
update the robot orientation. But if the robot is equipped with
several directional antennas, other constraints can be applied
on the robot position and orientation from the observation
of one RFID tag from one known antenna. The Rackham
demonstrator (figure 1(right)) is equipped with 8 directional
antennas. Figure 14(left)) presents the calibrated reception
fields: antennas receives signals emitted in a 120 deg cone,
from less than 4,5 meters. A tag can be received from one,
two or three antennas, depending on its position with respect
to the robot in the red, blue and green regions.

When a tag located in (Xt, Yt) is received by an antenna
located in (Xa, Ya) with an orientation θa with respect to



Fig. 9. A simulated environment with tags (blue dots) and a robot trajectory
(Xi positions).

the world frame (see figure 14(right)), it gives two new
constraints : the tag must be in the reception field, i.e. in
the disk, but also between two straight lines :

Yt − [tg(θa − α)(Xt −Xa) + Ya] < 0;

Yt − [tg(θa + α)(Xt −Xa) + Ya] > 0

Similar constraints can be applied also if a tag is not
received. So these constraints are applied in order to estimate
the likelihood of a robot position estimate from observations
of tags with our RFID reader connected to eight antennas.
Figure 13 shows the estimated robot positions and orien-
tations Xi

e with the simulated environment and trajectory
(figure 9).

V. DISCUSSIONS

Two approaches for RFID-based localization have been
proposed. Even if implementation and validation are on the
way, some drawbacks and advantages can be stressed.

At first, the installation of RFID-barriers is more invasive
even if simpler than a dense RFID carpet. These barriers
make use of very short range passive RFID devices, involving
no potential inconveniences for humans; ground-based RFID
tags cannot be occluded and as far as our own evaluation has
shown, they are always detected.

On the contrary, (wall, shelf or ceiling)-mounted long-
range RFID-based systems can be occluded as well as other
landmark-based systems proposed for localization; it is an
important disadvantage compared to a short-range RFID
system. The potential inconvenience for humans is more
important: so only a sparse RFID distribution could be
tolerated. Nevertheless, for existing environments, the RFID
installation could be very fast, above all if a SLAM-like
procedure is provided in order to learn the tags positions,

Fig. 10. Prediction, Observation, Estimation.

Fig. 11. The predicted positions (without any observation).

Fig. 12. The estimated positions from RFID observations.



Fig. 13. The estimated positions and orientations from RFID observations.

Fig. 14. Directionnal antennas on the robot.

or to update these positions on line. First experiments with
the Shopping Trolley demonstrator with a metallic basket
(figure 1(left)), equipped by our directional antennas, are on
the way: we are designing more compact antennas in order
to make simpler their integration on such a trolley.

So the first approach could be more suitable for new stores,
while the second one could be easily carried out in existing
stores. They could be fused in the same system, with RFID-
barriers used only for topological localization wheras shelf-
mounted tags could be used with other modalities (vision) for
metrical localization in an area. Several methods have been
developped by LAAS for visual-based robot localization
from planar landmarks [6].

Moreover, for our shopping application, the possibility to
detect tags on the shelf, could be used also to detect products,
assuming that RFID tags could be added in the price labels
on the shelves, not on products in order to limit the tags
density.

VI. CONCLUSIONS AND FUTURES WORKS

This paper has presented two different, but finally comple-
mentary methods in order to take advantage of RFID tags for
the self-localization of a mobile robot in a commercial center.
By now topological localization has been integrated on the
Trolley demonstrator using RFID-barriers and a very short
range RFID reader mounted under the robot. Topological
and metrical localization from both RFID tags and visual
landmarks set on shelves, is studied using an RFID reader

and directionnal antennas mounted all around the robot. This
sensor will also allow to detect and identify the User, who
will take an RFID key when taking the Trolley at the session
initialization.

In the next period, the two approaches will be integrated
and fused on the Trolley; the topological and semantical
maps will be learnt or updated from a priori maps, using
cooperative behaviours amongst several robots.
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